Analysis of a Caulobacter crescentus gene cluster involved in attachment of the holdfast to the cell

Author:

Kurtz H D1,Smith J1

Affiliation:

1. Department of Microbiology, University of British Columbia, Vancouver, Canada.

Abstract

Caulobacter crescentus firmly adheres to surfaces with a structure known as the holdfast, which is located at the flagellar pole of swarmer cells and at the stalk tip in stalked cells. A three-gene cluster (hfaAB and hfaC) is involved in attachment of the holdfast to the cell. Deletion and complementation analysis of the hfaAB locus revealed two genes in a single operon; both were required for holdfast attachment to the cell. Sequence analysis of the hfaAB locus showed two open reading frames with the potential to encode proteins of 15,000 and 26,000 Da, respectively. A protein migrating with an apparent size of 21 kDa in gel electrophoresis was encoded by the hfaA region when expressed in Escherichia coli under the control of the lac promoter, but no protein synthesis could be detected from the hfaB region. S1 nuclease analysis indicated that transcription of the hfaAB locus was initiated from a region containing a sequence nearly identical to the consensus for C. crescentus sigma 54-dependent promoters. In addition, a sequence with some similarity to ftr sequences (a consensus sequence associated with other Caulobacter sigma 54-dependent genes) was identified upstream of the hypothesized sigma 54 promoter. At least one of the hfaAB gene products was required for maximal transcription of hfaC. The sequence of hfaB showed some similarity to that of transcriptional activators of other bacteria. The C-terminal region of the putative gene product HfaA was found to be homologous to PapG and SmfG, which are adhesin molecules of enteropathogenic E. coli and Serratia marcescens, respectively. This information suggests that the protein encoded by the hfaA locus may have a direct role in the attachment of the holdfast to the cell, whereas hfaB may be involved in the positive regulation of hfaC.

Publisher

American Society for Microbiology

Subject

Molecular Biology,Microbiology

Cited by 42 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3