The devR gene product is characteristic of receivers of two-component regulatory systems and is essential for heterocyst development in the filamentous cyanobacterium Nostoc sp. strain ATCC 29133

Author:

Campbell E L1,Hagen K D1,Cohen M F1,Summers M L1,Meeks J C1

Affiliation:

1. Section of Microbiology, Division of Biological Sciences, University of California, Davis, California 95616, USA.

Abstract

Strain UCD 311 is a transposon-induced mutant of Nostoc sp. strain ATC C 29133 that is unable to fix nitrogen in air but does so under anoxic conditions and is able to establish a functional symbiotic association with the hornwort Anthoceros punctatus. These properties of strain UCD 311 are consistent with previous observations that protection against oxygen inactivation of nitrogenase is physiologically provided within A. punctatus tissue. Upon deprivation of combined nitrogen, strain UCD 311 clearly differentiates heterocysts and contains typical heterocyst-specific glycolipids; it also makes apparently normal akinetes upon phosphate starvation. Sequence analysis adjacent to the point of the transposon insertion revealed an open reading frame designated devR. Southern analysis established that similar sequences are present in other heterocyst-forming cyanobacteria. devR putatively encodes a protein of 135 amino acids with high similarity to the receiver domains of response regulator proteins characteristics of two-component regulatory systems. On the basis of its size and the absence of other functional domains, DevR is most similar to CheY and Spo0F. Reconstruction of the mutation with an interposon vector confirmed that the transposition event was responsible for the mutant phenotype. The presence of wild-type devR on a plasmid in strain UCD 311 restored the ability to fix nitrogen in air. While devR was not essential for differentiation of akinetes, its presence in trans in Nostoc sp. strain ATCC 29133 stimulated their formation to above normal levels in aging medium. On the basis of RNA analysis, devR is constitutively expressed with respect to the nitrogen source for growth. The devR gene product is essential to the development of mature heterocysts and may be involved in a sensory pathway that is not directly responsive to cellular nitrogen status.

Publisher

American Society for Microbiology

Subject

Molecular Biology,Microbiology

Reference40 articles.

1. The developmental biology of heterocyst and akinete formation in cyanobacteria;Adams D. G.;Crit. Rev. Microbiol.,1981

2. Basic local alignment search tool;Altschul S. F.;J. Mol. Biol.,1990

3. Berg C. M. and D. E. Berg. 1987. Uses of transposable elements and maps of known insertions p. 1071-1109. In F. C. Neidhardt J. L. Ingraham K. B. Low B. Magasanik M. Schaechter and H. E. Umbarger (ed.) Escherichia coli and Salmonella typhimurium: cellular and molecular biology. American Society for Microbiology Washington D.C.

4. Identification of multiple RNA polymerase sigma factor homologs in the cyanobacterium Anabaena sp. strain PCC 7120: cloning, expression, and inactivation of the sigB and sigC genes;Brahamsha B.;J. Bacteriol.,1992

5. Characterization of a gene controlling heterocyst differentiation in the cyanobacterium Anabaena 7120;Buikema W. J.;Genes Dev.,1990

Cited by 60 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3