Transcription start sites for syrM and nodD3 flank an insertion sequence relic in Rhizobium meliloti

Author:

Barnett M J1,Rushing B G1,Fisher R F1,Long S R1

Affiliation:

1. Department of Biological Sciences, Stanford University, California 94305, USA.

Abstract

In Rhizobium meliloti the syrM regulatory gene positively controls nod D3 and syrA, and nodD3 positively controls syrM and nod regulon genes such as nodABC, syrM and nodD3 are divergently transcribed and are separated by approximately 2.8 kb of DNA. The 885-bp SphI DNA fragment between syrM and nodD3 was subcloned and sequenced. Analysis of this intergenic region showed two open reading frames similar to those found in insertion elements of the IS3 family. We determined transcription initiation sites for both syrM and nodD3 using primer extension. The syrM transcription initiation site is 499 bp upstream of the syrM protein-coding region and downstream of a nod box which shows several differences from the R. meliloti nod box consensus sequence. We demonstrated binding of NodD3 to DNA containing the syrM nod box. The nodD3 start site maps 659 bp upstream of the nodD3 translation initiation site. A putative SyrM binding site was identified upstream of the nodD3 start site on the basis of sequence similarity to the upstream region of syrA, another locus regulated by SyrM.

Publisher

American Society for Microbiology

Subject

Molecular Biology,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3