Affiliation:
1. Instituto de Investigaciones Biomédicas, Consejo Superior de Investigaciones Científicas, Madrid, Spain.
Abstract
The question of how the loss of regulatory mechanisms for a metabolic enzyme would affect the fitness of the corresponding organism has been addressed. For this, the fructose-1,6-bisphosphatase (FbPase) from Saccharomyces cerevisiae has been taken as a model. Yeast strains in which different controls on FbPase (catabolite repression and inactivation; inhibition by fructose-2,6-bisphosphate and AMP) have been removed have been constructed. These strains express during growth on glucose either the native yeast FbPase, the Escherichia coli FbPase which is insensitive to inhibition by fructose-2,6-bisphosphate, or a mutated E. coli FbPase with low sensitivity to AMP. Expression of the heterologous FbPases increases the fermentation rate of the yeast and its generation time, while it decreases its growth yield. In the strain containing high levels of an unregulated bacterial FbPase, cycling between fructose-6-phosphate and fructose-1,6-bisphosphate reaches 14%. It is shown that the regulatory mechanisms of FbPase provide a slight but definite competitive advantage during growth in mixed cultures.
Publisher
American Society for Microbiology
Subject
Molecular Biology,Microbiology
Cited by
27 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献