A recent fixation of cfiA genes in a monophyletic cluster of Bacteroides fragilis is correlated with the presence of multiple insertion elements

Author:

Ruimy R1,Podglajen I1,Breuil J1,Christen R1,Collatz E1

Affiliation:

1. Centre National de la Recherche Scientifique, and Université Paris VI,France.

Abstract

Small-subunit ribosomal DNA sequences of 16 strains of Bacteroides fragilis were determined and compared with previously published sequences. Three phylogenetic methods (the neighbor-joining, maximum-likelihood, and maximum-parsimony methods) as well as a bootstrap analysis were used to assess the robustness of each topology. All phylogenetic analyses demonstrated that the B. fragilis strains were clearly divided into two robust monophyletic units which corresponded to the cfiA-negative and cfiA-positive groups. Strains of two previously identified DNA homology groups separated similarly into the two monophyletic units. According to the intensity of the hybridization signal with a cfiA probe, the cfiA-positive cluster could be further divided into two groups. This difference might reflect the existence of two, probably closely related cfiA-type genes. In the strongly hybridizing cfiA-positive strains, the gene is capable of conferring high-level resistance to the carbapenems and to most beta-lactamase inhibitors as well, while in the weakly hybridizing cfiA-positive strains, only the latter type of resistance is known to occur. The presence of the cfiA-type genes within a monophyletic cluster of B. fragilis that apparently represents only a minority of the species B. fragilis is suggestive of a recent acquisition. The fact that this cluster is also the predominant pool of all known B. fragilis insertion elements, which have been found to play an important role in the expression of carbapenem resistance, raises the possibility that both genetic determinants, i.e., the resistance gene(s) and insertion elements, may have coevolved.

Publisher

American Society for Microbiology

Subject

Molecular Biology,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3