Sedimentary DNA Reveals Cyanobacterial Community Diversity over 200 Years in Two Perialpine Lakes

Author:

Monchamp Marie-Eve12,Walser Jean-Claude3,Pomati Francesco12,Spaak Piet12

Affiliation:

1. Eawag, Swiss Federal Institute of Aquatic Science and Technology, Department of Aquatic Ecology, Dübendorf, Switzerland

2. Institute of Integrative Biology, Swiss Federal Institute of Technology (ETH), Zürich, Switzerland

3. Genetic Diversity Centre (GDC), Department of Environmental Systems Science, Swiss Federal Institute of Technology (ETH), Zürich, Switzerland

Abstract

ABSTRACT We reconstructed cyanobacterial community structure and phylogeny using DNA that was isolated from layers of stratified sediments spanning 200 years of lake history in the perialpine lakes Greifensee and Lake Zurich (Switzerland). Community analysis based on amplification and sequencing of a 400-nucleotide (nt)-long 16S rRNA fragment specific to Cyanobacteria revealed operational taxonomic units (OTUs) capturing the whole phylum, including representatives of a newly characterized clade termed Melainabacteria , which shares common ancestry with Cyanobacteria and has not been previously described in lakes. The reconstruction of cyanobacterial richness and phylogenetic structure was validated using a data set consisting of 40 years of pelagic microscopic counts from each lake. We identified the OTUs assigned to common taxa known to be present in Greifensee and Lake Zurich and found a strong and significant relationship (adjusted R 2 = 0.89; P < 0.001) between pelagic species richness in water and OTU richness in the sediments. The water-sediment richness relationship varied between cyanobacterial orders, indicating that the richness of Chroococcales and Synechococcales may be underestimated by microscopy. PCR detection of the microcystin synthetase gene mcyA confirmed the presence of potentially toxic cyanobacterial taxa over recent years in Greifensee and throughout the last century in Lake Zurich. The approach presented in this study demonstrates that it is possible to reconstruct past pelagic cyanobacterial communities in lakes where the integrity of the sedimentary archive is well preserved and to explore changes in phylogenetic and functional diversity over decade-to-century timescales. IMPORTANCE Cyanobacterial blooms can produce toxins that affect water quality, especially under eutrophic conditions, which are a consequence of human-induced climate warming and increased nutrient availability. Lakes worldwide have suffered from regular cyanobacterial blooms over the last century. The lack of long-term data limits our understanding of how these blooms form. We successfully reconstructed the past diversity of whole cyanobacterial communities over two hundred years by sequencing genes preserved in the sediments of two perialpine lakes in Switzerland. We identified changes in diversity over time and validated our results using existing data collected in the same two lakes over the past 40 years. This work shows the potential of our approach for addressing important ecological questions about the effects of a changing environment on lake ecology.

Publisher

American Society for Microbiology

Subject

Ecology,Applied Microbiology and Biotechnology,Food Science,Biotechnology

Cited by 80 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3