Affiliation:
1. Malaria Program, Naval Medical Research Institute, Bethesda, Maryland 20889-5607.
Abstract
Expression of inducible nitric oxide (NO) synthase has been shown to inhibit the development of several pathogens, including fungi, bacteria, parasites, and viruses. However, there is still controversy as to whether this effector mechanism can inhibit the development of human pathogens. We now report that gamma interferon (IFN-gamma) induces the elimination of Plasmodium falciparum-infected primary human hepatocytes from cultures and that the antimalarial activity is dependent on NO. Infection with the parasite alone in the absence of added IFN-gamma caused a 10-fold increase in NO formation. Both spontaneous inhibition and IFN-gamma-induced inhibition of Plasmodium yoelii-infected murine hepatocytes were increased with the addition of the NO synthase cofactor tetrahydrobiopterin, or sepiapterin, which is converted to tetrahydrobiopterin. These results indicate that under in vitro conditions the parasite itself provides a signal that triggers induction of the NO pathway in human and murine hepatocytes and that NO formation in infected hepatocytes is limited by tetrahydrobiopterin availability.
Publisher
American Society for Microbiology
Subject
Infectious Diseases,Immunology,Microbiology,Parasitology
Cited by
96 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献