Insertion of bacteriophage lambda into the deo operon of Escherichia coli K-12 and isolation of plaque-forming lambdadeo+ transducing bacteriophages

Author:

Buxton R S,Hammer-Jespersen K,Hansen T D

Abstract

A procedure has been devised to isolate plaque-forming lambda cI857S7 transducing bacteriophage which carry the internal promoter, P3, of the deo operon of Escherichia coli and the deoB and deoD genes, while lacking the deoP and cytP promoters of the same operon, in order to study, specifically, regulation at the P3 site. This has been accomplished by selecting for the insertion of bacteriophage lambda into the deoA gene in a strain deleted for the normal lambda attachment site (delta att lambda) and isolating from this lysogen lambda spi- and lambda EDTAr phage. Among these, lambda pdeoB+D+ phage were identified by their transducing abilities. From in vivo enzyme induction experiments performed on a delta deo strain lysogenized with such phage, they were shown to carry the P3 promoter while lacking the deoP and cytP promoters. A lambdapdeo B+D+ phage phage was used to lysogenize a deo+ delta att lambda strain, integration of lambda occurring within the region of homology, and, from a heat-induced lysate of this strain, a plaque-forming lambda+ phage carrying the complete deo operon was obtained. Phage lambda was also inserted into the deoB and deoD genes and into the tdk gene. By isolating lambdaspi- and lambdaEDTAr phage from the deo::(lambda) mutants and determining which bacterial genes they carried and whether they retained the int gene of lambda, it was found that lambda had inserted into deoD with the same orientation as lambda inserted into attlambda, whereas lambda inserted into deoA and deoB had the opposite orientation. Deletions extending from the site of lambda insertion into the bacterial chromosome were isolated by selecting for heat-resistant revertants. These confirmed the order of markers to be deo-serB-trpR-thr and also placed a locus, msp, determining sensitivity or resistance of male strains to male-specific phages, between trpR and thr. For some reason unknown, but which may be related to the orientation of the lambda prophages, short deletions rendering the bacterium Ser- Thr+ were of much lower frequency from the deoD::(lambda) lysogen than from the other two lysogens. From an examination of the residual deoD enzyme levels in deoB::(lambda) mutants, it was deduced that there may be two promoter sites within the deoB::(lambda) mutants, it was deduced that there may be two promoter sites within the deoB gene, transcription from one of these being sufficient to account for the noncoordinate nature of the induction of deoB and deoD gene products.

Publisher

American Society for Microbiology

Subject

Molecular Biology,Microbiology

Cited by 23 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3