Extracellular Nucleases of Streptococcus equi subsp. zooepidemicus Degrade Neutrophil Extracellular Traps and Impair Macrophage Activity of the Host

Author:

Ma Fang1,Guo Xiao1,Fan Hongjie12

Affiliation:

1. College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China

2. Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China

Abstract

ABSTRACT The pathogen Streptococcus equi subsp. zooepidemicus is associated with a wide range of animals, including humans, and outbreaks frequently occur in pigs, equines, and goats. Thus far, few studies have assessed interactions between the host immune system and S. equi subsp. zooepidemicus and how these interactions explain the wide host spectrum of S. equi subsp. zooepidemicus . Neutrophils, the first line of innate immunity, possess a defense mechanism called neutrophil extracellular traps (NETs), which primarily consist of DNA and granule proteins that trap bacteria via charge interactions. Extracellular nucleases play important roles in the degradation of the DNA backbone of NETs. Here, two related extracellular nucleases, nuclease and 5′-nucleotidase (named ENuc and 5Nuc, respectively, in this study), were identified as being encoded by the SESEC_RS04165 gene and the SESEC_RS05720 gene (named ENuc and 5Nuc , respectively), and three related gene deletion mutant strains, specifically, the single-mutant ΔENuc and Δ5Nuc strains and the double-mutant ΔENuc Δ5Nuc strain, were constructed. The ΔENuc and Δ5Nuc single-mutant strains and the ΔENuc Δ5Nuc double-mutant strain demonstrated lower virulence than wild-type S. equi subsp. zooepidemicus when the mouse survival rate was evaluated postinfection. Furthermore, wild-type S. equi subsp. zooepidemicus more frequently traversed the bloodstream and transferred to other organs. Wild-type S. equi subsp. zooepidemicus induced fewer NETs and was able to survive in NETs, whereas only 40% of the ΔENuc Δ5Nuc double-mutant cells survived. S. equi subsp. zooepidemicus degraded the NET DNA backbone and produced deoxyadenosine, primarily through the action of ENuc and/or 5Nuc. However, the double-mutant ΔENuc Δ5Nuc strain lost the ability to degrade NETs into deoxyadenosine. Deoxyadenosine decreased RAW 264.7 cell phagocytosis to 40% of that of normal macrophages. IMPORTANCE Streptococcus equi subsp. zooepidemicus causes serious bacteremia in its hosts. However, little is known about how S. equi subsp. zooepidemicus interacts with the host innate immune system, particularly innate cells found in the blood. S. equi subsp. zooepidemicus is capable of evading NET-mediated killing via the actions of its potent extracellular nucleases, ENuc and 5Nuc, which directly degrade the NET DNA backbone to deoxyadenosine. In previous studies, other pathogens have required the synergism of nuclease and 5′-nucleotidase to engage in this self-protective process; however, ENuc and 5Nuc both possess nuclease activity and 5′-nucleotidase activity, highlighting the novelty of this discovery. Furthermore, deoxyadenosine impairs phagocytosis but not the intracellular bactericidal activity of macrophages. Here we describe a novel mechanism for S. equi subsp. zooepidemicus extracellular nucleases in NET degradation, which may provide new insights into the pathogen immune evasion mechanism and the prevention and treatment of bacterial disease.

Funder

National Transgenic Major Program

Special Fund for Agro-scientific Research in Public Interest

National Science Foundation of China

the Project Funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions

Jiangsu Agricultural Science and Technology Innovation Fund

Publisher

American Society for Microbiology

Subject

Ecology,Applied Microbiology and Biotechnology,Food Science,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3