Lysozyme and Penicillin Inhibit the Growth of Anaerobic Ammonium-Oxidizing Planctomycetes

Author:

Hu Ziye,van Alen Theo,Jetten Mike S. M.,Kartal Boran

Abstract

ABSTRACTAnaerobic ammonium-oxidizing (anammox) planctomycetes oxidize ammonium in the absence of molecular oxygen with nitrite as the electron acceptor. Although planctomycetes are generally assumed to lack peptidoglycan in their cell walls, recent genome data imply that the anammox bacteria have the genes necessary to synthesize peptidoglycan-like cell wall structures. In this study, we investigated the effects of two antibacterial agents that target the integrity and synthesis of peptidoglycan (lysozyme and penicillin G) on the anammox bacteriumKuenenia stuttgartiensis. The effects of these compounds were determined in both short-term batch incubations and long-term (continuous-cultivation) growth experiments in membrane bioreactors. Lysozyme at 1 g/liter (20 mM EDTA) lysed anammox cells in less than 60 min, whereas penicillin G did not have any observable short-term effects on anammox activity. Penicillin G (0.5, 1, and 5 g/liter) reversibly inhibited the growth of anammox bacteria in continuous-culture experiments. Furthermore, transcriptome analyses of the penicillin G-treated reactor and the control reactor revealed that penicillin G treatment resulted in a 10-fold decrease in the ribosome levels of the cells. One of the cell division proteins (Kustd1438) was downregulated 25-fold. Our results suggested that anammox bacteria contain peptidoglycan-like components in their cell wall that can be targeted by lysozyme and penicillin G-sensitive proteins were involved in their synthesis. Finally, we showed that a continuous membrane reactor system with free-living planktonic cells was a very powerful tool to study the physiology of slow-growing microorganisms under physiological conditions.

Publisher

American Society for Microbiology

Subject

Ecology,Applied Microbiology and Biotechnology,Food Science,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3