Pulmonary Deposition and Elimination of Liposomal Amikacin for Inhalation and Effect on Macrophage Function after Administration in Rats

Author:

Malinin Vladimir1,Neville Mary1,Eagle Gina1,Gupta Renu1,Perkins Walter R.1

Affiliation:

1. Insmed Incorporated, Bridgewater, New Jersey, USA

Abstract

ABSTRACT Pulmonary nontuberculous mycobacterial (PNTM) infections represent a treatment challenge. Liposomal amikacin for inhalation (LAI) is a novel formulation currently in development for the treatment of PNTM infections. The pulmonary deposition and elimination of LAI and its effect on macrophage function were evaluated in a series of preclinical studies in healthy rats. The pulmonary deposition of LAI was evaluated in female rats ( n = 76) treated with LAI by nebulizer at 10 mg/kg of body weight per day or 90 mg/kg per day for 27 days, followed by dosing of dually labeled LAI (LAI with a lipid label plus an amikacin label) on day 28 with subsequent lung histological and amikacin analyses. In a separate study for assessment of alveolar macrophage function, rats ( n = 180) received daily treatment with LAI at 90 mg/kg per day or 1.5% saline over three 30-day treatment periods followed by 30-day recovery periods; phagocytic and Saccharomyces cerevisiae (yeast) killing capabilities and inflammatory mediator release were assessed at the end of each period. LAI demonstrated equal dose-dependent deposition across all lung lobes and regions. Lipid and amikacin labels showed diffuse extracellular colocalization, followed by macrophage uptake and gradual amikacin elimination. Macrophages demonstrated accumulation of amikacin during treatment periods and nearly complete elimination during recovery periods. No evidence of an inflammatory response was seen. No differences in microsphere uptake or yeast killing were seen between LAI-treated and control macrophages. Neither LAI-treated nor control macrophages demonstrated constitutive inflammatory mediator release; however, both showed normal mediator release on lipopolysaccharide stimulation. LAI is readily taken up by macrophages in healthy rats without compromising macrophage function.

Publisher

American Society for Microbiology

Subject

Infectious Diseases,Pharmacology (medical),Pharmacology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3