Fusion Activity of Transmembrane and Cytoplasmic Domain Chimeras of the Influenza Virus Glycoprotein Hemagglutinin

Author:

Schroth-Diez Britta1,Ponimaskin Evgeni2,Reverey Helmut2,Schmidt Michael F. G.2,Herrmann Andreas1

Affiliation:

1. Institut für Biologie/Biophysik, Mathematisch-Naturwissenschaftliche Fakultät I, Humboldt-Universität zu Berlin, D-10115 Berlin,1 and

2. the Institut für Immunologie und Molekularbiologie, Fachbereich Veterinärmedizin der Freien Universität Berlin, D-10117 Berlin,2 Germany

Abstract

ABSTRACT The role of the sequence of transmembrane and cytoplasmic/intraviral domains of influenza virus hemagglutinin (HA, subtype H7) for HA-mediated membrane fusion was explored. To analyze the influence of the two domains on the fusogenic properties of HA, we designed HA-chimeras in which the cytoplasmic tail and/or transmembrane domain of HA was replaced with the corresponding domains of the fusogenic glycoprotein F of Sendai virus. These chimeras, as well as constructs of HA in which the cytoplasmic tail was replaced by peptides of human neurofibromin type1 (NF1) or c-Raf-1, NF78 (residues 1441 to 1518), and Raf81 (residues 51 to 131), respectively, were expressed in CV-1 cells by using the vaccinia virus-T7 polymerase transient-expression system. Wild-type and chimeric HA were cleaved properly into two subunits and expressed as trimers. Membrane fusion between CV-1 cells and bound human erythrocytes (RBCs) mediated by parental or chimeric HA proteins was studied by a lipid-mixing assay with the lipid-like fluorophore octadecyl rhodamine B chloride (R18). No profound differences in either extent or kinetics could be observed. After the pH was lowered, the above proteins also induced a flow of the aqueous fluorophore calcein from preloaded RBCs into the cytoplasm of the protein-expressing CV-1 cells, indicating that membrane fusion involves both leaflets of the lipid bilayers and leads to formation of an aqueous fusion pore. We conclude that neither HA-specific sequences in the transmembrane and cytoplasmic domains nor their length is crucial for HA-induced membrane fusion activity.

Publisher

American Society for Microbiology

Subject

Virology,Insect Science,Immunology,Microbiology

Cited by 43 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3