oxyR , a LysR-Type Regulator Involved in Klebsiella pneumoniae Mucosal and Abiotic Colonization

Author:

Hennequin Claire1,Forestier Christiane1

Affiliation:

1. Université de Clermont 1, UFR Pharmacie, Laboratoire de Bactériologie, 28 Place Henri Dunant, Clermont-Ferrand F-63001, France

Abstract

ABSTRACT Colonization of the gastrointestinal tract is the first event in Klebsiella pneumoniae nosocomial infections, followed by colonization of the bladder or respiratory tract or entry into the bloodstream. To survive in the host, bacteria must harbor specific traits and overcome multiple stresses. OxyR is a conserved bacterial transcription factor with a key role both in the upregulation of defense mechanisms against oxidative stress and in pathogenesis by enhancing biofilm formation, fimbrial expression, and mucosal colonization. A homolog of oxyR was detected in silico in the K. pneumoniae sequenced genome and amplified from the LM21 wild-type strain. To determine the role of oxyR in K. pneumoniae host-interaction processes, an oxyR isogenic mutant was constructed, and its behavior was assessed. At concentrations lower than 10 7 ml −1 , oxyR -deficient organisms were easily killed by micromolar concentrations of H 2 O 2 and exhibited typical aerobic phenotypes. The oxyR mutant was impaired in biofilm formation and types 1 and 3 fimbrial gene expression. In addition, the oxyR mutant was unable to colonize the murine gastrointestinal tract, and in vitro assays showed that it was defective in adhesion to Int-407 and HT-29 intestinal epithelial cells. The behavior of the oxyR mutant was also determined under hostile conditions, reproducing stresses encountered in the gastrointestinal environment: deletion of oxyR resulted in higher sensitivity to bile and acid stresses but not to osmotic stress. These results show the pleiotropic role of oxyR in K. pneumoniae gastrointestinal colonization.

Publisher

American Society for Microbiology

Subject

Infectious Diseases,Immunology,Microbiology,Parasitology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3