Host immunity involvement in the outcome of phage therapy against hypervirulent Klebsiella pneumoniae infections

Author:

Tang Miran1ORCID,Yao Zhuocheng1,Liu Yan1,Ma Zhexiao2,Zhao Deyi2,Mao Zhenzhi1,Wang Yue1,Chen Lijiang1ORCID,Zhou Tieli1ORCID

Affiliation:

1. Department of Clinical Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China

2. School of Laboratory Medicine and Life Science, Wenzhou Medical University, Wenzhou, Zhejiang, China

Abstract

ABSTRACT Highly encapsulated hypervirulent Klebsiella pneumoniae (hvKp) causes severe infections. Bacteriophage therapy, an antibiotic alternative, effectively treats bacterial infections. Phage φFK1979 encoding polysaccharide depolymerases can target and disarm the capsule of hvKp FK1979, showing promise against FK1979 infection. Resistant strains induced by φFK1979 are possibly eliminated by host immunity and new phage phiR3 targeting them. We constructed varied immunocompromised FK1979 infection mouse models to assess the therapy efficacy of φFK1979 alone or in combination with phiR3. Survival rates, bacterial loads, histopathology, inflammation, and immune cell distribution of mice were studied. Prompt and adequate administration of φFK1979, rather than phiR3, significantly improved survival rates in mice with different immune statuses. However, immunocompromised mice showed lower efficacy due to reduced tolerance to low-virulence φFK1979-resistant bacteria compared to immunocompetent mice. Adding phiR3 sequentially greatly enhanced therapy efficacy for them, leading to increased survival rates and notable improvements in pathology and inflammation. Immunocompetent mice exhibited the most favorable response to φFK1979 monotherapy, as their immune system cleared φFK1979-resistant bacteria while avoiding a robust response to phiR3 combating φFK1979-resistant bacteria. This study revealed host immunity involvement in the outcome of phage therapy against infections and introduced, for the first time, personalized phage therapy strategies for hvKp-infected mice with varying immune statuses. IMPORTANCE Hypervirulent Klebsiella pneumoniae (hvKp), with high capsular polysaccharide production, can cause severe invasive infections. Capsule-targeting phage poses the potential to fight against hvKp. We previously elucidated that the capsule-targeting phage induces resistance in hvKp, while phage-resistant strains exhibit sensitivity to host innate immunity and new phages targeting them. This indicated that phage-resistant strains can be eliminated by the immune system in immunocompetent patients, whereas they may require treatment with phages targeting resistant bacteria in immunocompromised patients. HvKp can infect individuals with varying immune statuses, including both immunocompetent and immunocompromised/deficient patients. This study, for the first time, developed personalized phage therapy strategies for hvKp-infected mice with different immune statuses, optimizing phage therapy against hvKp infections. This research is expected to provide a theoretical foundation and novel insights for clinical phage therapy against hvKp infections, offering significant societal benefits and clinical value.

Funder

MOST | National Natural Science Foundation of China

Key Laboratory of Clinical Laboratory Diagnosis and Translational Research of Zhejiang Province

Publisher

American Society for Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3