Lytic sensitivity of Actinobacillus actinomycetemcomitans Y4 to lysozyme

Author:

Iacono V J,Boldt P R,MacKay B J,Cho M I,Pollock J J

Abstract

The ability of both human and hen egg white lysozymes to lyse Actinobacillus actinomycetemcomitans Y4 was investigated. Lysis was followed optically at 540 nm by measuring the percent reduction in turbidity of freshly harvested log-phase cells suspended in Tris-maleate buffers within a wide range of pH (5.2 to 8.5) and molarity (0.01 to 0.2 M) and containing various amounts of enzyme and EDTA. In several instances, treated microorganisms were subsequently examined in thin sections by electron microscopy. Reductions in turbidity and clearing of suspensions occurred with small amounts of lysozyme (less than 1 microgram) under relatively alkaline conditions and at low ionic strength and in the presence of small amounts of EDTA (greater than 0.01 mM). Under the most alkaline conditions, EDTA alone effected turbidity reductions similar to those observed in the presence of lysozyme, which suggested that EDTA not only increased outer membrane permeability but also caused cell lysis. Ultrastructural analysis did not always correspond to turbidimetric observations. Cell lysis was virtually complete in suspensions containing both lysozyme and EDTA. However, in contrast to turbidimetric findings, a significant percentage of cells (greater than 25%) was lysed in the presence of lysozyme alone. Furthermore, significant damage occurred in the presence of EDTA alone. Spheroplast-like cell ghosts were present which surrounded condensed cytoplasm or relatively clear spaces. These findings further support the concept of the requirement for electron microscopy to assess lytic damage in addition to turbidimetric and biochemical methods. Our results are the first to demonstrate the remarkable sensitivity of A. actinomycetemcomitans Y4 to lysozyme and to show that EDTA not only affects outer membrane permeability but effects cell lysis, possibly through activation of autolytic enzymes at the cytoplasmic membrane. The exquisite sensitivity of A. actinomycetemcomitans Y4 to lysis could be an important mechanism by which lysozyme participates in the regulation of this suspected periodontal pathogen.

Publisher

American Society for Microbiology

Subject

Infectious Diseases,Immunology,Microbiology,Parasitology

Reference62 articles.

1. Studies on the immune bacteriolysis by Iysozyme-like substance of leucocytes and egg-white lysozyme;Amano T.;Med. J. Osaka Univ.,1954

2. Occurrence of N-substituted glucosamine residues in peptidoglycan of Iysozyme-resistant cell wall from Bacillus cereus;Araki Y.;J. Biol. Chem.,1972

3. Studies on neutrophil polymorphonuclear leukocytes at the dento-gingival junction in gingival health and disease;Attstrom R.;J. Periodontal Res.,1971

4. Ultrastructure of Veillonella and morphological correlation of an outer membrane with particles associated with endotoxic activity;Bladen H. A.;J. Bacteriol.,1964

5. A comparative study of the Iysozyme activity of human gingival pocket fluid, serum, and saliva;Brandtzaeg P.;Acta Odontol. Scand.,1964

Cited by 24 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3