CD4+ and CD8+ T lymphocytes both contribute to acquired immunity to blood-stage Plasmodium chabaudi AS

Author:

Podoba J E1,Stevenson M M1

Affiliation:

1. Centre for the Study of Host Resistance, Montreal General Hospital Research Institute, Quebec, Canada.

Abstract

In the present study, the contribution of CD4+ and CD8+ T lymphocytes to acquired immunity to blood-stage infection with the murine malaria species Plasmodium chabaudi AS was investigated. C57BL/6 mice, which are genetically resistant to infection with this hemoprotozoan parasite and exhibit a transient course of infection, were treated intraperitoneally with monoclonal antibodies to T-cell epitopes, either anti-Thy-1, anti-CD4, or anti-CD8. After intraperitoneal infection with 10(6) parasitized erythrocytes, control C57BL/6 mice exhibited a peak parasitemia on day 9 of approximately 35% parasitized erythrocytes and eliminated the infection within 4 weeks. Mice depleted of Thy-1+ or CD4+ T cells had significantly higher parasitemias on day 7 as well as significantly higher peak parasitemias. These mice were unable to control the infection and developed a persistent, high parasitemia that fluctuated between 40 and 60% until the experiment was terminated on day 56 postinfection. Depletion of CD8+ T lymphocytes was found to have no effect on the early course of parasitemia or on the level of peak parasitemia. However, mice depleted of CD8+ T cells experienced two recurrent bouts of parasitemia during the later stage of the infection and required more than 5 weeks to eliminate the parasites. After the peak parasitemia, which occurred in control and experimental animals on day 9, there was a sharp drop in parasitemia coinciding with a wave of reticulocytosis. Therefore, the contribution of the influx of reticulocytes, which are not the preferred host cell of this hemoprotozoan parasite, to limiting the parasitemia was also examined by determining the course of reticulocytosis during infection in control and T cell-depleted animals. Early in infection, there was a marked and comparable reticulocytosis in the peripheral blood of control and T cell-depleted mice; the reticulocytosis peaked on day 12 and coincided with the dramatic and sudden reduction in parasitemia occurring in all groups. In both control and CD8-depleted mice the percentage of reticulocytes decreased as the infection was resolved, whereas in CD4-depleted mice marked reticulocytosis correlated with high, persistent parasitemia. These results thus demonstrate that both CD4+ and CD8+ T cells are involved in acquired immunity to blood-stage P. chabaudi AS and that the influx of reticulocytes into the blood that occurs just after the peak parasitemia may contribute temporarily to limiting the parasitemia.

Publisher

American Society for Microbiology

Subject

Infectious Diseases,Immunology,Microbiology,Parasitology

Reference42 articles.

1. Adoptive protection against Plasmodium chabaudi adami malaria in athymic nude mice by a cloned T cell line;Brake D. A.;J. Immunol.,1988

2. Antigenspecific, interleukin-2 propagated T Iymphocytes confer resistance to a murine malarial parasite, Plasmodium chabaudi adami;Brake D. A.;J. Immunol.,1986

3. T cell-mediated immune response in murine malaria: differential effects of antigen-specific Lyt T cell subset in recovery from infection in normal and T cell-deficient mice;Brinkmann V.;Infect. Immun.,1985

4. T cells and protective immunity to Plasmodium berghei in rats;Brown K. N.;Infect. Immun.,1976

5. T-cell immunity in murine malaria: adoptive transfer of resistance to Plasmodium chabaudi adami in nude mice with splenic T cells;Cavacini L. A.;Infect. Immun.,1986

Cited by 119 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3