Intramacrophagic Mycobacterium avium bacilli are coated by a multiple lamellar structure: freeze fracture analysis of infected mouse liver

Author:

Rulong S1,Aguas A P1,da Silva P P1,Silva M T1

Affiliation:

1. Section of Membrane Biology, National Cancer Institute-Frederick Cancer Research and Development Center, Maryland 21702-1201.

Abstract

We used freeze fracture electron microscopy to study the fine structure of Mycobacterium avium inside phagosomes of murine macrophages. M. avium-susceptible C57BL/6 mice were infected with M. avium by intraperitoneal inoculation of 10(8) viable bacilli. We studied the microanatomy of the mycobacteria in 3-month infections of mice, a situation in which bacillary multiplication is extensive. In these samples, freeze fracture revealed that intraphagosomal bacilli were surrounded by a multilamellar coat that was apposed to the cell wall. In thin sections, in contrast, the area corresponding to the coat showed no substructure and was electron transparent (the so-called electron-transparent zone that has been previously reported by others). The multiple lamellae resembled an onionlike assembly that was inserted in between the mycobacterial wall outer surface and the phagosomal membrane. Each lamella of the M. avium coat was made up of parallel straight fibrils with a width of 5 nm. A variable number of lamellae, sometimes up to 10 or more elements, coated individual bacilli. The multilamellar coat was absent around both extracellular M. avium and intramacrophagic M. avium after short-term (45-min) inoculation of mice. The supramolecular organization of the M. avium lamellar coat as viewed here by freeze fracture is similar to that of purified mycoside C (P. Draper, J. Gen. Microbiol. 83:431-433, 1974; K.-S. Kim, M.R.J. Salton, and L. Barksdale, J. Bacteriol. 125:739-743, 1976), a mycobacterial component currently known as glycopeptidolipid (W.W. Barrow and P.J. Brennan, J. Bacteriol. 150:381-384, 1982). We conclude that M. avium bacilli growing in macrophages are surrounded by multilamellar capsulelike structures that contain glycopeptidolipid molecules.

Publisher

American Society for Microbiology

Subject

Infectious Diseases,Immunology,Microbiology,Parasitology

Cited by 44 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3