Affiliation:
1. Section of Membrane Biology, National Cancer Institute-Frederick Cancer Research and Development Center, Maryland 21702-1201.
Abstract
We used freeze fracture electron microscopy to study the fine structure of Mycobacterium avium inside phagosomes of murine macrophages. M. avium-susceptible C57BL/6 mice were infected with M. avium by intraperitoneal inoculation of 10(8) viable bacilli. We studied the microanatomy of the mycobacteria in 3-month infections of mice, a situation in which bacillary multiplication is extensive. In these samples, freeze fracture revealed that intraphagosomal bacilli were surrounded by a multilamellar coat that was apposed to the cell wall. In thin sections, in contrast, the area corresponding to the coat showed no substructure and was electron transparent (the so-called electron-transparent zone that has been previously reported by others). The multiple lamellae resembled an onionlike assembly that was inserted in between the mycobacterial wall outer surface and the phagosomal membrane. Each lamella of the M. avium coat was made up of parallel straight fibrils with a width of 5 nm. A variable number of lamellae, sometimes up to 10 or more elements, coated individual bacilli. The multilamellar coat was absent around both extracellular M. avium and intramacrophagic M. avium after short-term (45-min) inoculation of mice. The supramolecular organization of the M. avium lamellar coat as viewed here by freeze fracture is similar to that of purified mycoside C (P. Draper, J. Gen. Microbiol. 83:431-433, 1974; K.-S. Kim, M.R.J. Salton, and L. Barksdale, J. Bacteriol. 125:739-743, 1976), a mycobacterial component currently known as glycopeptidolipid (W.W. Barrow and P.J. Brennan, J. Bacteriol. 150:381-384, 1982). We conclude that M. avium bacilli growing in macrophages are surrounded by multilamellar capsulelike structures that contain glycopeptidolipid molecules.
Publisher
American Society for Microbiology
Subject
Infectious Diseases,Immunology,Microbiology,Parasitology
Cited by
44 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献