WASH Knockout T Cells Demonstrate Defective Receptor Trafficking, Proliferation, and Effector Function

Author:

Piotrowski Joshua T.1,Gomez Timothy S.12,Schoon Renee A.12,Mangalam Ashutosh K.1,Billadeau Daniel D.12

Affiliation:

1. Department of Immunology, College of Medicine, Mayo Clinic, Rochester, Minnesota, USA

2. Division of Oncology Research and Schulze Center for Novel Therapeutics, College of Medicine, Mayo Clinic, Rochester, Minnesota, USA

Abstract

ABSTRACT WASH is an Arp2/3 activator of the Wiskott-Aldrich syndrome protein superfamily that functions during endosomal trafficking processes in collaboration with the retromer and sorting nexins, but its in vivo function has not been examined. To elucidate the physiological role of WASH in T cells, we generated a WASH conditional knockout (WASHout) mouse model. Using CD4 Cre deletion, we found that thymocyte development and naive T cell activation are unaltered in the absence of WASH. Surprisingly, despite normal T cell receptor (TCR) signaling and interleukin-2 production, WASHout T cells demonstrate significantly reduced proliferative potential and fail to effectively induce experimental autoimmune encephalomyelitis. Interestingly, after activation, WASHout T cells fail to maintain surface levels of TCR, CD28, and LFA-1. Moreover, the levels of the glucose transporter, GLUT1, are also reduced compared to wild-type T cells. We further demonstrate that the loss of surface expression of these receptors in WASHout cells results from aberrant accumulation within the collapsed endosomal compartment, ultimately leading to degradation within the lysosome. Subsequently, activated WASHout T cells experience reduced glucose uptake and metabolic output. Thus, we found that WASH is a newly recognized regulator of TCR, CD28, LFA-1, and GLUT1 endosome-to-membrane recycling. Aberrant trafficking of these key T cell proteins may potentially lead to attenuated proliferation and effector function.

Publisher

American Society for Microbiology

Subject

Cell Biology,Molecular Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3