Cloning and Characterization of the Glucosidase II Alpha Subunit Gene of Trichoderma reesei : a Frameshift Mutation Results in the Aberrant Glycosylation Profile of the Hypercellulolytic Strain Rut-C30

Author:

Geysens Steven1,Pakula Tiina2,Uusitalo Jaana2,Dewerte Isabelle1,Penttilä Merja2,Contreras Roland1

Affiliation:

1. Fundamental and Applied Molecular Biology, Department for Molecular Biomedical Research, Ghent University and VIB (Flemish Interuniversity Institute for Biotechnology), Ghent-Zwijnaarde, Belgium

2. VTT Biotechnology, Espoo, Finland

Abstract

ABSTRACT We describe isolation and characterization of the gene encoding the glucosidase II alpha subunit (GIIα) of the industrially important fungus Trichoderma reesei . This subunit is the catalytic part of the glucosidase II heterodimeric enzyme involved in the structural modification within the endoplasmic reticulum (ER) of N-linked oligosaccharides present on glycoproteins. The gene encoding GIIα ( gls2 α) in the hypercellulolytic strain Rut-C30 contains a frameshift mutation resulting in a truncated gene product. Based on the peculiar monoglucosylated N-glycan pattern on proteins produced by the strain, we concluded that the truncated protein can still hydrolyze the first α-1,3-linked glucose residue but not the innermost α-1,3-linked glucose residue from the Glc 2 Man 9 GlcNAc 2 N-glycan ER structure. Transformation of the Rut-C30 strain with a repaired T. reesei gls2 α gene changed the glycosylation profile significantly, decreasing the amount of monoglucosylated structures and increasing the amount of high-mannose N-glycans. Full conversion to high-mannose carbohydrates was not obtained, and this was probably due to competition between the endogenous mutant subunit and the introduced wild-type GIIα protein. Since glucosidase II is also involved in the ER quality control of nascent polypeptide chains, its transcriptional regulation was studied in a strain producing recombinant tissue plasminogen activator (tPA) and in cultures treated with the stress agents dithiothreitol (DTT) and brefeldin A (BFA), which are known to block protein transport and to induce the unfolded protein response. While the mRNA levels were clearly upregulated upon tPA production or BFA treatment, no such enhancement was observed after DTT addition.

Publisher

American Society for Microbiology

Subject

Ecology,Applied Microbiology and Biotechnology,Food Science,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3