Identification of a novel transcriptional regulator, CorR, for copper stress response in Edwardsiella piscicida

Author:

Xia Feng1,Xu Pengfei1,Zhang Boya1,Zhang Yibei123,Liu Xiaohong123,Ma Yue123,Zhang Yuanxing23,Wang Qiyao123,Shao Shuai123ORCID

Affiliation:

1. State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China

2. Shanghai Engineering Research Center of Maricultured Animal Vaccines, Shanghai, China

3. Laboratory of Aquatic Animal Diseases of MOA, Shanghai, China

Abstract

ABSTRACT Copper plays a vital role in the host–pathogen interface, potentially making components of the bacterial copper response suitable targets for the development of innovative antimicrobial strategies. The anti-copper arsenal of intracellular pathogens has expanded as an adaptation to survive copper toxicity in order to escape intracellular killing by the host immune system. Herein, we employed transposon insertion sequencing to investigate the genetic mechanisms underlying the survival of Edwardsiella piscicida under copper stress. A novel transcriptional regulator, ETAE_2324 (named CorR), was identified to participate in the response to copper ions by controlling the expression of copA, the core component of cytoplasmic copper homeostasis. Furthermore, CorR regulated the expression of virulent determinant eseB , influencing the in vivo colonization of E. piscicida . Collectively, our results contribute to the comprehension of the underlying mechanism of the adaption of intracellular pathogens to copper stress during bacterial infections. IMPORTANCE Copper ions play a pivotal role in the interaction between bacteria and the host during infection. The host’s innate immune system employs copper ions for their bactericidal properties, thereby making bacterial copper tolerance a crucial determinant of virulence. Edwardsiella piscicida , a significant marine pathogen, has caused substantial losses in the global aquaculture industry. To comprehensively investigate how E. piscicida responds to copper stress, we utilized transposon insertion sequencing to explore genes associated with copper tolerance in culture media containing different concentrations of copper ions. A novel transcriptional regulator, CorR, was identified to respond to copper ions and regulates the expression of crucial components of copper homeostasis CopA, along with the essential virulence factor EseB. These findings offer valuable insights into the underlying mechanisms that govern bacterial copper tolerance and present novel perspectives for the development of vaccines and therapeutic strategies targeting E. piscicida .

Funder

MOST | National Key Research and Development Program of China

MOST | National Natural Science Foundation of China

China Agriculture Research System of MOF and MARA

Publisher

American Society for Microbiology

Subject

Ecology,Applied Microbiology and Biotechnology,Food Science,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3