Nucleotide sequence and functional map of pC194, a plasmid that specifies inducible chloramphenicol resistance

Author:

Horinouchi S,Weisblum B

Abstract

The nucleotide sequence of pC194, a small plasmid from Staphylococcus aureus which is capable of replication in Bacillus subtilis, has been determined. The genetic determinant of chloramphenicol (CAM) resistance, which includes the chloramphenicol acetyl transferase (CAT) structural gene, the putative promoter and controlling element of this determinant, have been mapped functionally by subcloning a 1,035-nucleotide fragment which specifies the resistance phenotype using plasmid pBR322 as vector. Expression of CAM resistance is autogenously regulated since the 1,035-nucleotide fragment containing the CAT gene sequence and its promoter cloned into pBR322 expresses resistance inducibly in the Escherichia coli host. A presumed controlling element of CAT expression consists of a 37-nucleotide inverted complementary repeat sequence that is located between the -10 and ribosome-loading sequences of the CAT structural gene. Whereas the composite plasmid containing the minimal CAT determinant cloned in pBR322 could not replicate in B. subtilis, ability to replicate in B. subtilis was seen if the fragment cloned included an extension consisting of an additional 300 nucleotides beyond the 5' end of the single pC194 MspI site associated with replication. This 5' extension contained a 120-nucleotide inverted complementary repeat sequence similar to that found in pE194 TaqI fragment B which contains replication sequences of that plasmid. pC194 was found to contain four opening reading frames theoretically capable of coding for proteins with maximum molecular masses, as follows: A, 27,800 daltons; B, 26,200 daltons; C, 15,000 daltons; and D, 9,600 daltons. Interruption or deletion of either frame A or D does not entail loss of ability to replicate or to express CAM resistance, whereas frame B contains the CAT structural gene and frame C contains sequences associated with plasmid replication.

Publisher

American Society for Microbiology

Subject

Molecular Biology,Microbiology

Reference24 articles.

1. Nucleotide sequence of the chloramphenicol resistance transposon Tn 9;Alton N. K.;Nature (London),1979

2. High frequency transformation of Bacillus subtilis protoplasts by plasmid DNA;Chang S.;Mol. Gen. Genet.,1979

3. Replication and expression of plasmids from Staphylococcus aureus in Bacillus subtilis;Ehrich S. D.;Proc. Natl. Acad. Sci. U.S.A.,1977

4. DNA cloning in Bacillus subtilis;EhrIch S. D.;Proc. Natl. Acad. Sci. U.S.A.,1978

5. Sequences of controiling regions of the lactose operon;Gilbert W.;Cold Spring Harbor Symp. Quant. Biol.,1978

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3