Enumeration of Bacteriophages and Host Bacteria in Sewage and the Activated-Sludge Treatment Process

Author:

Ewert Donald L.1,Paynter M. J. B.1

Affiliation:

1. Department of Microbiology, Clemson University, Clemson, South Carolina 29631

Abstract

Bacteriophage populations in an activated-sludge sewage treatment plant were enumerated. A newly developed assay for quantitation of total phages, employing direct electron microscopic counts, was used in conjunction with the plaque assay. The total concentration of phages was significantly higher in reactor mixed liquor and effluent than in influent sewage, indicating a net production of phages within the reactor. Maximum total phage concentrations in the fluid phase of sewage, activated-sludge mixed liquor, and reactor effluent were 2.2 × 10 7 , 9.5 × 10 7 , and 8.4 × 10 7 /ml, respectively. Conditions were optimized for isolation of predominant heterotrophic aerobic bacteria from sewage and mixed liquor. Blending at ice water temperatures was superior to ultrasound or enzyme treatments for maximum release of viable bacteria from microbial floc. A solidified extract of mixed liquor was superior to standard media for cultivating maximum numbers of heterotrophic bacteria. The highest culture counts for sewage and mixed liquor were 1.4 × 10 7 and 1.3 × 10 9 /ml, respectively, which represented only 3 and 6.8% of the total microscopic cell counts. Only 3 out of 48 dominant bacterial isolates from either mixed liquor or sewage were hosts for phages present in the system. The sum of phage populations infecting these three hosts accounted for, at best, 3.8% (sewage) and 0.2% (mixed liquor) of the total number of phages present. Generally, specific phage titers were lower in mixed liquor than in sewage, indicating that these hosts were not responsible for the net production of phages in the reactor. This study emphasizes the limitations of the plaque assay for ecological studies of phages, and it suggests that bacteria responsible for phage production in activated-sludge mixed liquor are either minor components of the heterotrophic population, floc-producing strains, or members of other physiological groups.

Publisher

American Society for Microbiology

Subject

Ecology,Applied Microbiology and Biotechnology,Food Science,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3