Reactive Oxygen and Nitrogen Species Differentially Regulate Toll-Like Receptor 4-Mediated Activation of NF-κB and Interleukin-8 Expression

Author:

Ryan Kieran A.1,Smith Michael F.1,Sanders Michael K.1,Ernst Peter B.1

Affiliation:

1. Digestive Health Center of Excellence, University of Virginia, Charlottesville, Virginia 22908

Abstract

ABSTRACT Toll-like receptor 4 (TLR4) has been identified as a transmembrane protein involved in the host innate immune response to gram-negative bacterial lipopolysaccharide (LPS). Upon activation by LPS recognition, the TIR domain of TLR4 signals through MyD88 to activate the nuclear factor κB (NF-κB) pathway, a critical regulator of many proinflammatory genes, including interleukin-8 (IL-8). Emerging evidence suggests that reactive oxygen species (ROS) can contribute to diverse signaling pathways, including the LPS-induced cascade. In the present study we investigated the role of ROS in TLR-mediated signaling. Purified Escherichia coli LPS, a highly specific TLR4 agonist, elicited an oxidative burst in the monocyte-like cell line THP-1 in a time- and dose-dependent manner. This oxidative burst was shown to be dependent on the presence of TLR4 through transfection studies in HEK cells, which do not normally express this protein, and with bone marrow-derived macrophages from C3H/HeJ mice, which express a mutated TLR4 protein. LPS-stimulated IL-8 expression could be blocked by the antioxidants N -acetyl- l -cysteine and dimethyl sulfoxide at both the protein and mRNA levels. These antioxidants also blocked LPS-induced IL-8 promoter transactivation as well as the nuclear translocation of NF-κB. These data provide evidence that ROS regulate immune signaling through TLR4 via their effects on NF-κB activation.

Publisher

American Society for Microbiology

Subject

Infectious Diseases,Immunology,Microbiology,Parasitology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3