Purification and Molecular Cloning of and Immunization with Ancylostoma ceylanicum Excretory-Secretory Protein 2, an Immunoreactive Protein Produced by Adult Hookworms

Author:

Bungiro Richard D.1,Solis Carolina V.1,Harrison Lisa M.1,Cappello Michael1

Affiliation:

1. Child Health Research Center, Departments of Pediatrics and Epidemiology & Public Health, Yale University School of Medicine, New Haven, Connecticut 06520-8081

Abstract

ABSTRACT Hookworms remain major agents of global morbidity, and vaccination against these bloodfeeding parasites may be an attractive complement to conventional control methods. Here we describe the cloning of Ancylostoma ceylanicum excretory-secretory protein 2 (AceES-2), a novel immunoreactive protein produced by adult worms. Native AceES-2 was purified from excretory-secretory (ES) products by reverse-phase high-pressure liquid chromatography, subjected to amino-terminal sequencing, and cloned from adult worm RNA by using reverse transcription-PCR. The translated AceES-2 cDNA predicts that the mature protein consists of 102 amino acids and has a molecular mass of 11.66 kDa. Western immunoblot and enzyme-linked immunosorbent assay analyses demonstrated that recombinant AceES-2 (rAceES-2) reacted strongly with antibodies from A. ceylanicum -infected hamsters. Immunization of hamsters with native ES products adsorbed to alum induced antibodies that recognized rAceES-2, while rAceES-2-alum vaccination resulted in antibodies that reacted with a single protein band in ES products that closely approximated the size predicted for the native molecule. Infected hamsters that were passively immunized with hyperimmune rabbit anti-rAceES-2 serum exhibited more rapid and complete recovery from anemia than controls that received normal serum. Oral immunization with rAceES-2 was associated with significantly reduced anemia upon challenge, an outcome similar to the outcome observed in hamsters that were orally vaccinated with soluble hookworm extract (the latter animals were also resistant to weight loss). These data suggest that AceES-2 plays an important role in the host-parasite interaction and that vaccination against this protein may represent a useful strategy for controlling hookworm anemia.

Publisher

American Society for Microbiology

Subject

Infectious Diseases,Immunology,Microbiology,Parasitology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3