Novel Method for Rapid Assessment of Antibiotic Resistance in Escherichia coli Isolates from Environmental Waters by Use of a Modified Chromogenic Agar

Author:

Watkinson A. J.12,Micalizzi G. R.3,Bates J. R.3,Costanzo S. D.1

Affiliation:

1. National Research Centre for Environmental Toxicology, 39 Kessels Road, Coopers Plains, Brisbane, Queensland, Australia 4108

2. Cooperative Research Centre for Water Quality and Treatment, PMB 3, Salisbury, South Australia, Australia 5108

3. Public Health Microbiology, Queensland Health Scientific Services, 39 Kessels Road, Coopers Plains, Queensland, Australia 4108

Abstract

ABSTRACT We validated a novel method for screening Escherichia coli resistance to antibiotics in environmental samples using modified Difco MI agar (Becton Dickinson) impregnated with selected antibiotics (tetracycline, ampicillin, cephalexin, and sulfamethoxazole), termed MI-R. This method combines an existing rapid assessment technique for E. coli enumeration with clinical reference data for breakpoint analysis of antibiotic resistance and was developed to address issues encountered when clinical methods are used with environmental samples. Initial trials conducted using strains of E. coli with resistance to the selected antibiotics showed that this method was reproducible and accurate with respect to antibiotic resistance. Trials using wastewater effluent demonstrated the precision of the method, and the levels of resistance found in effluent were directly comparable to the levels of antibiotic resistance determined using the more traditional CLSI (formerly NCCLS) disk susceptibility test. All wastewater isolates growing on MI-R plates were confirmed to be resistant using the CLSI disk susceptibility test. Bacterial resistance to ampicillin (38% ± 4% overall), sulfamethoxazole, tetracycline (21% ± 3% overall), and ciprofloxacin (6% ± 1%) were found in wastewater effluent. A successful trial was also conducted with water collected from the Brisbane River, Australia. The levels of antibiotic resistance in E. coli ranged from 0 to 47% for ampicillin, from 0 to 24% for tetracycline, from 0 to 63% for sulfamethoxazole, and from 0 to 1% for ciprofloxacin, with the highest incidence of resistance associated with wastewater treatment plant discharges. This method has great potential for rapid and representative assessment of antibiotic resistance in E. coli and could allow increased sample analysis, resulting in greater confidence in spatial analysis in environmental studies.

Publisher

American Society for Microbiology

Subject

Ecology,Applied Microbiology and Biotechnology,Food Science,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3