Structure of a laccase-mediated product of coupling of 2,4-diamino-6-nitrotoluene to guaiacol, a model for coupling of 2,4,6-trinitrotoluene metabolites to a humic organic soil matrix

Author:

Dawel G,Kastner M,Michels J,Poppitz W,Gunther W,Fritsche W

Abstract

This work presents laccase-mediated model reactions for coupling of reduced 2,4,6-trinitrotoluene (TNT) metabolites to an organic soil matrix. The structure of an isolated coupling product of 2,4-diamino-6-nitrotoluene (2,4-DANT) to guaiacol as humic constituent was determined. Among several structures, the compound was identified conclusively to be the trinuclear coupling product 5-(2-amino-3-methyl-4-nitroanilino)-3,3(prm1)-dimethoxy-4,4(prm1)-diphenoqu inone. The compound has a weight of 409 g mol(sup-1) and may serve as a model reaction for the biogenic formation of bound residues in soil from TNT by coupling aminotoluenes (reduced TNT metabolites) to humic constituents. A linear correlation of the substrate consumption to the enzyme activity was detected. Based on this observation, the described reaction of 2,4-DANT coupling to guaiacol may be used for determination of laccase activity since the reaction was not inhibited by other compounds of culture supernatants. We propose a two-step mechanism for the coupling reaction because 2,4-DANT was not transformed by laccases in the absence of guaiacol and guaiacol oxidation was independent of the presence of 2,4-DANT. The first reaction step is a laccase-mediated dimerization of two guaiacol monomers with subsequent oxidation to a diphenoquinone. The second step is the nucleophilic addition of 2,4-DANT to the ortho position of the carbonyl group of the diphenoquinone structure.

Publisher

American Society for Microbiology

Subject

Ecology,Applied Microbiology and Biotechnology,Food Science,Biotechnology

Cited by 64 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3