Molecular genetic characterization of the L-lactate dehydrogenase gene (ldhL) of Lactobacillus helveticus and biochemical characterization of the enzyme

Author:

Savijoki K1,Palva A1

Affiliation:

1. Agricultural Research Centre of Finland, Food Research Institute, Jokioinen, Finland.

Abstract

The Lactobacillus helveticus L-(+)-lactate dehydrogenase (L-LDH) gene (ldhL) was isolated from a lambda library. The nucleotide sequence of the ldhL gene was determined and shown to have the capacity to encode a protein of 323 amino acids (35.3 kDa). The deduced sequence of the 35-kDa protein revealed a relatively high degree of identity with other lactobacillar L-LDHs. The highest identity (80.2%) was observed with the Lactobacillus casei L-LDH. The sizes and 5' end analyses of ldhL transcripts showed that the ldhL gene is a monocistronic transcriptional unit. The expression of ldhL, studied as a function of growth, revealed a high expression level at the logarithmic phase of growth. The ldhL gene is preceded by two putative -10 regions, but no corresponding -35 regions could be identified. By primer extension analysis, the ldhL transcripts were confirmed to be derived from the -10 region closest to the initiation codon. However, upstream of these regions additional putative -10/-35 regions could be found. The L-LDH was overexpressed in Escherichia coli and purified to homogeneity by two chromatographic steps. The purified L-LDH was shown to be a nonaliosteric enzyme, and amino acid residues involved in allosteric regulation were not conserved in L. helveticus L-LDH. However, a slight enhancement of enzyme activity was observed in the presence of fructose 1,6-diphosphate, particularly at neutral pH. A detailed enzymatic characterization of L-LDH was performed. The optimal reaction velocity was at pH 5.0, where the kinetic parameters K(m), and Kcat for pyruvate were 0.25 mM and 643 S-1, respectively.

Publisher

American Society for Microbiology

Subject

Ecology,Applied Microbiology and Biotechnology,Food Science,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3