Novel Bacterial Acetyl Coenzyme A Carboxylase Inhibitors with Antibiotic Efficacy In Vivo

Author:

Freiberg C.1,Pohlmann J.1,Nell P. G.1,Endermann R.1,Schuhmacher J.1,Newton B.1,Otteneder M.1,Lampe T.1,Häbich D.1,Ziegelbauer K.1

Affiliation:

1. Pharma Research & Development, Discovery Europe, Bayer Health Care AG, D-42096 Wuppertal, Germany

Abstract

ABSTRACT The pseudopeptide pyrrolidinedione antibiotics, such as moiramide B, have recently been discovered to target the multisubunit acetyl coenzyme A (acetyl-CoA) carboxylases of bacteria. In this paper, we describe synthetic variations of each moiety of the modularly composed pyrrolidinediones, providing insight into structure-activity relationships of biochemical target activity, in vitro potency, and in vivo efficacy. The novel derivatives showed highly improved activities against gram-positive bacteria compared to those of previously reported variants. The compounds exhibited a MIC 90 value of 0.1 μg/ml against a broad spectrum of Staphylococcus aureus clinical isolates. No cross-resistance to antibiotics currently used in clinical practice was observed. Resistance mutations induced by pyrrolidinediones are exclusively located in the carboxyltransferase subunits of the bacterial acetyl-CoA carboxylase, indicating the identical mechanisms of action of all derivatives tested. Improvement of the physicochemical profile was achieved by salt formation, leading to aqueous solubilities of up to 5 g/liter. For the first time, the in vitro activity of this compound class was compared with its in vivo efficacy, demonstrating a path from compounds weakly active in vivo to agents with significant efficacy. In a murine model of S. aureus sepsis, the 100% effective dose of the best compound reported was 25 mg/kg of body weight, only fourfold higher than that of the comparator molecule linezolid. The obvious improvements achieved by chemical derivatization reflect the potential of this novel antibiotic compound class for future therapy.

Publisher

American Society for Microbiology

Subject

Infectious Diseases,Pharmacology (medical),Pharmacology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3