Affiliation:
1. Department of Molecular Biotechnology, Graduate School of Advanced Sciences of Matter, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8530, Japan
Abstract
ABSTRACT
The biosynthetic gene cluster of lankamycin (LM), a 14-member macrolide antibiotic, is encoded on the 210-kb linear plasmid pSLA2-L in
Streptomyces rochei
7434AN4. LM contains a 3-hydroxy-2-butyl group at the C-13 position, which is different from an ethyl group in erythromycin. The following two possibilities could be considered for the origin of this starter moiety of LM biosynthesis: (i) an extra module exists in the biosynthetic gene cluster and loads an additional acetate molecule, or (ii) 3-hydroxy-2-butyrate or its equivalent is loaded and incorporated as a starter. The former possibility was eliminated by the complete sequencing of pSLA2-L, which showed no extra module. On the other hand, the latter was confirmed by incorporation of deuterium in [3-
2
H]
dl
-isoleucine into the C-14 position of LM. The timing of hydroxylation reactions at the C-15 and C-8 positions of LM was studied by constructing disruptants of two P450 hydroxylase genes,
lkmF
(
orf26
) and
lkmK
(
orf37
). The
lkmF
disruptant produced 8-deoxylankamycin, while the
lkmK
disruptant produced both 15-deoxylankamycin and 8,15-dideoxylankamycin. These results clearly showed that LkmF is a C-8 hydroxylase and LkmK is a C-15 hydroxylase in LM biosynthesis and in addition suggested the order of hydroxylation steps; namely, hydroxylation may occur at first at C-15 by LkmK and then at C-8 by LkmF.
Publisher
American Society for Microbiology
Subject
Infectious Diseases,Pharmacology (medical),Pharmacology
Cited by
28 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献