Serratia marcescensarn, a PhoP-Regulated Locus Necessary for Polymyxin B Resistance

Author:

Lin Quei Yen,Tsai Yi-Lin,Liu Ming-Che,Lin Wei-Cheng,Hsueh Po-Ren,Liaw Shwu-Jen

Abstract

ABSTRACTPolymyxins, which are increasingly being used to treat infections caused by multidrug-resistant bacteria, perform poorly againstSerratia marcescens. To investigate the underlying mechanisms, Tn5mutagenesis was performed and two mutants exhibiting increased polymyxin B (PB) susceptibility were isolated. The mutants were found to have Tn5inserted into thearnBandarnCgenes. In other bacteria,arnBandarnCbelong to the seven-genearnoperon, which is involved in lipopolysaccharide (LPS) modification. LPSs ofarnmutants had greater PB-binding abilities than that of wild-type LPS. Further, we identified PhoP, a bacterial two-component response regulator, as a regulator of PB susceptibility inS. marcescens. By the reporter assay, we found PB- and low-Mg2+-induced expression ofphoPandarnin the wild-type strain but not in thephoPmutant. Complementation of thephoPmutant with the full-lengthphoPgene restored the PB MIC and induction by PB and low Mg2+levels, as in the wild type. An electrophoretic mobility shift assay (EMSA) further demonstrated that PhoP bound directly to thearnpromoter. The PB challenge test confirmed that pretreatment with PB and low Mg2+levels protectedS. marcescensfrom a PB challenge in the wild-type strain but not in thephoPmutant. Real-time reverse transcriptase-PCR also indicated that PB serves as a signal to regulate expression ofugd, a gene required for LPS modification, inS. marcescensthrough a PhoP-dependent pathway. Finally, we found that PB-resistant clinical isolates displayed greater expression ofarnAupon exposure to PB than did susceptible isolates. This is the first report to describe the role ofS. marcescensarnin PB resistance and its modulation by PB and Mg2+through the PhoP protein.

Publisher

American Society for Microbiology

Subject

Infectious Diseases,Pharmacology (medical),Pharmacology

Cited by 52 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3