Differential Role of Manduca sexta Aminopeptidase-N and Alkaline Phosphatase in the Mode of Action of Cry1Aa, Cry1Ab, and Cry1Ac Toxins from Bacillus thuringiensis

Author:

Flores-Escobar Biviana,Rodríguez-Magadan Hector,Bravo Alejandra,Soberón Mario,Gómez Isabel

Abstract

ABSTRACTAminopeptidase-N (APN1) and alkaline phosphatase (ALP) proteins located in the midgut epithelium ofManduca sextahave been implicated as receptors for Cry1Aa, Cry1Ab, and Cry1Ac insecticidal proteins produced byBacillus thuringiensissubsp.kurstaki. In this study, we analyzed the roles of ALP and APN1 in the toxicity of these three Cry1A proteins. Ligand blot analysis using brush border membrane vesicles ofM. sextashowed that Cry1Aa and Cry1Ab bind preferentially to ALP during early instars while binding to APN was observed after the third instar of larval development. Cry1Ac binds to APN throughout all larval development, with no apparent binding to ALP. ALP was cloned fromM. sextamidgut RNA and expressed inEscherichia coli. Surface plasmon resonance binding analysis showed that recombinant ALP binds to Cry1Ac with 16-fold lower affinity than to Cry1Aa or Cry1Ab. Downregulation of APN1 and ALP expression by RNA interference (RNAi) using specific double-stranded RNA correlated with a reduction of transcript and protein levels. Toxicity analysis of the three Cry1A proteins in ALP- or APN1-silenced larvae showed that Cry1Aa relies similarly on both receptor molecules for toxicity. In contrast, RNAi experiments showed that ALP is more important than APN for Cry1Ab toxicity, while Cry1Ac relied principally on APN1. These results indicated that ALP and APN1 have a differential role in the mode of action of Cry1A toxins, suggesting thatB. thuringiensissubsp.kurstakiproduces different Cry1A toxins that in conjunction target diverse midgut proteins to exert their insecticidal effect.

Publisher

American Society for Microbiology

Subject

Ecology,Applied Microbiology and Biotechnology,Food Science,Biotechnology

Cited by 57 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3