Metabolism Shapes the Cell

Author:

Sperber Anthony M.1,Herman Jennifer K.1ORCID

Affiliation:

1. Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas, USA

Abstract

ABSTRACT More than 5 decades of work support the idea that cell envelope synthesis, including the inward growth of cell division, is tightly coordinated with DNA replication and protein synthesis through central metabolism. Remarkably, no unifying model exists to account for how these fundamentally disparate processes are functionally coupled. Recent studies demonstrate that proteins involved in carbohydrate and nitrogen metabolism can moonlight as direct regulators of cell division, coordinate cell division and DNA replication, and even suppress defects in DNA replication. In this minireview, we focus on studies illustrating the intimate link between metabolism and regulation of peptidoglycan (PG) synthesis during growth and division, and we identify the following three recurring themes. (i) Nutrient availability, not growth rate, is the primary determinant of cell size. (ii) The degree of gluconeogenic flux is likely to have a profound impact on the metabolites available for cell envelope synthesis, so growth medium selection is a critical consideration when designing and interpreting experiments related to morphogenesis. (iii) Perturbations in pathways relying on commonly shared and limiting metabolites, like undecaprenyl phosphate (Und-P), can lead to pleotropic phenotypes in unrelated pathways.

Funder

National Science Foundation

Publisher

American Society for Microbiology

Subject

Molecular Biology,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3