Packaging-Competent Capsids of a Herpes Simplex Virus Temperature-Sensitive Mutant Have Properties Similar to Those of In Vitro-Assembled Procapsids

Author:

Rixon Frazer J.1,McNab David1

Affiliation:

1. Medical Research Council Virology Unit, Institute of Virology, Glasgow G11 5JR, United Kingdom

Abstract

ABSTRACT Newcomb and coworkers (W. W. Newcomb, F. L. Homa, D. R. Thomsen, F. P. Booy, B. L. Trus, A. C. Steven, J. V. Spencer, and J. C. Brown, J. Mol. Biol. 263:432–446, 1996; W. W. Newcomb, F. L. Homa, D. R. Thomsen, Z. Ye, and J. C. Brown, J. Virol. 68:6059–6063, 1994) have recently described an in vitro herpes simplex virus (HSV) capsid assembly product which, because of certain parallels between its properties and those of bacteriophage proheads, they have designated the procapsid. As in their bacteriophage counterparts, there are marked differences between the structures of the two types of particle, and conversion from the procapsid to the capsid form requires extensive reconfiguration of the subunits. This reconfiguration occurs spontaneously upon extended in vitro incubation. One of the distinctive features of the HSV procapsids is that, unlike mature capsids, they are unstable and disassemble upon storage at 2°C. Using a mutant of HSV type 1 ( ts 1201), which has a lesion in the protease responsible for maturational cleavage of the scaffolding protein, we have demonstrated that capsids present within cells infected at nonpermissive temperatures are also cryosensitive and disappear if the cells are incubated at 0°C. This suggests that ts 1201 capsids may resemble procapsids in structure. However, ts 1201 capsids remain cryosensitive following extended incubation at an elevated temperature and, therefore, do not appear to undergo the spontaneous reconfiguration seen with in vitro-assembled procapsids. The lesion in ts 1201 is reversible, and capsids formed at the nonpermissive temperature can undergo maturational cleavage and go on to form infectious virions following downshift to permissive temperatures. The sensitivity of ts 1201 capsids to low temperatures is closely correlated with the cleavage status of the scaffolding protein, suggesting that proteolysis may act to trigger their conversion to the stable form. The experiments described here provide the firmest evidence yet that the procapsid has a biologically relevant role in the virus life cycle.

Publisher

American Society for Microbiology

Subject

Virology,Insect Science,Immunology,Microbiology

Cited by 51 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3