Amelioration of Retroviral Vector Silencing in Locus Control Region β-Globin-Transgenic Mice and Transduced F9 Embryonic Cells

Author:

Osborne Cameron S.1,Pasceri Peter1,Singal Rakesh2,Sukonnik Tanya1,Ginder Gordon D.23,Ellis James14

Affiliation:

1. Programs in Developmental Biology and Blood and Cancer Research, Hospital for Sick Children, Toronto, Ontario, Canada M5G 1X81;

2. Department of Medicine, Division of Medical Oncology, University of Minnesota, Minneapolis, Minnesota 55455-03622; and

3. Massey Cancer Center, Virginia Commonwealth University, Richmond, Virginia 23298-00373

4. Department of Molecular and Medical Genetics, University of Toronto, Toronto, Ontario, Canada4;

Abstract

ABSTRACT Retroviral vectors are transcriptionally silenced in hematopoietic stem cells, and this phenomenon must be overcome for effective gene therapy of blood diseases. The murine stem cell virus (MSCV) vector completely silences β-globin reporter genes regulated by locus control region (LCR) elements 5′HS2 to 5′HS4 in seven of eight transgenic mice. Here, we show that no single known MSCV silencer element is sufficient for complete LCR β-globin transgene silencing. However, partial silencing of high-copy transgenes is conveyed by the MSCV direct repeat and promoter elements. The CpG methylation pattern of silenced and expressed MSCV promoter transgenes is virtually identical, demonstrating that silencing does not absolutely correlate with methylation status. Combined mutations in all four MSCV silencer elements leads to expression of β-globin in 6 of 10 transgenic mice. The same mutations incorporated into the HSC1 retrovirus vector direct neo gene expression in 71% of transduced F9 embryonic carcinoma cells. These studies demonstrate that combined mutation of four retroviral silencer elements relieves complete silencing in most transgenic mice and transduced F9 cells and suggests that novel silencer elements remain. Enhanced expression of the HSC1 vector in primitive stem cells is well suited for blood gene therapy applications.

Publisher

American Society for Microbiology

Subject

Virology,Insect Science,Immunology,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3