Intracellular Restriction of a Productive Noncytopathic Coronavirus Infection

Author:

Slobodskaya Olga1,Laarman Alexander1,Spaan Willy J. M.1

Affiliation:

1. Molecular Virology Laboratory, Department of Medical Microbiology, Center of Infectious Diseases, Leiden University Medical Center, P.O. Box 9600, 2300 RC Leiden, The Netherlands

Abstract

ABSTRACT Virus infection in vitro can either result in a cytopathic effect (CPE) or proceed without visible changes in infected cells (noncytopathic infection). We are interested in understanding the mechanisms controlling the impact of coronavirus infection on host cells. To this end, we compared a productive, noncytopathic infection of murine hepatitis virus (MHV) strain A59 in the fibroblastlike cell line NIH 3T3 with cytopathic MHV infections. Infected NIH 3T3 cells could be cultured for up to 4 weeks without apparent CPE and yet produce virus at 10 7 to 10 8 PFU/ml. Using flow cytometry, we demonstrated that NIH 3T3 cells expressed as much MHV receptor CEACAM1 as other cell lines which die from MHV infection. In contrast, using quantitative reverse transcription-PCR and metabolic labeling of RNA, we found that the rate of viral RNA amplification in NIH 3T3 cells was lower than the rate in cells in which MHV induces a CPE. The rate of cellular RNA synthesis in contact-inhibited confluent NIH 3T3 cells was also lower than in cells permissive to cytopathic MHV infection. However, the induction of cellular RNA synthesis in growing NIH 3T3 cells did not result in an increase of either viral RNA amplification or CPE. Our results suggest that a specific, receptor CEACAM1-independent mechanism restricting coronaviral RNA synthesis and CPE is present in NIH 3T3 and, possibly, other cells with preserved contact inhibition.

Publisher

American Society for Microbiology

Subject

Virology,Insect Science,Immunology,Microbiology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3