Affiliation:
1. Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, University of Palermo, Palermo, Italy
2. Naicons Srl, Milan, Italy
3. John Innes Centre, Norwich Research Park, Norwich, United Kingdom
Abstract
ABSTRACT
The actinomycete
Nonomuraea
sp. strain ATCC 39727 produces the glycopeptide A40926, the precursor of dalbavancin. Biosynthesis of A40926 is encoded by the
dbv
gene cluster, which contains 37 protein-coding sequences that participate in antibiotic biosynthesis, regulation, immunity, and export. In addition to the positive regulatory protein Dbv4, the A40926-biosynthetic gene cluster encodes two additional putative regulators, Dbv3 and Dbv6. Independent mutations in these genes, combined with bioassays and liquid chromatography-mass spectrometry (LC-MS) analyses, demonstrated that Dbv3 and Dbv4 are both required for antibiotic production, while inactivation of
dbv6
had no effect. In addition, overexpression of
dbv3
led to higher levels of A40926 production. Transcriptional and quantitative reverse transcription (RT)-PCR analyses showed that Dbv4 is essential for the transcription of two operons,
dbv14-dbv8
and
dbv30-dbv35
, while Dbv3 positively controls the expression of four monocistronic transcription units (
dbv4
,
dbv29
,
dbv36
, and
dbv37
) and of six operons (
dbv2-dbv1
,
dbv14-dbv8
,
dbv17-dbv15
,
dbv21-dbv20
,
dbv24-dbv28
, and
dbv30-dbv35
). We propose a complex and coordinated model of regulation in which Dbv3 directly or indirectly activates transcription of
dbv4
and controls biosynthesis of 4-hydroxyphenylglycine and the heptapeptide backbone, A40926 export, and some tailoring reactions (mannosylation and hexose oxidation), while Dbv4 directly regulates biosynthesis of 3,5-dihydroxyphenylglycine and other tailoring reactions, including the four cross-links, halogenation, glycosylation, and acylation.
IMPORTANCE
This report expands knowledge of the regulatory mechanisms used to control the biosynthesis of the glycopeptide antibiotic A40926 in the actinomycete
Nonomuraea
sp. strain ATCC 39727. A40926 is the precursor of dalbavancin, approved for treatment of skin infections by Gram-positive bacteria. Therefore, understanding the regulation of its biosynthesis is also of industrial importance. So far, the regulatory mechanisms used to control two other similar glycopeptides (balhimycin and teicoplanin) have been elucidated, and beyond a common step, different clusters seem to have devised different strategies to control glycopeptide production. Thus, our work provides one more example of the pitfalls of deducing regulatory roles from bioinformatic analyses only, even when analyzing gene clusters directing the synthesis of structurally related compounds.
Publisher
American Society for Microbiology
Subject
Molecular Biology,Microbiology