Infection and Replication of Influenza Virus at the Ocular Surface

Author:

Creager Hannah M.12,Kumar Amrita1,Zeng Hui1,Maines Taronna R.1,Tumpey Terrence M.1,Belser Jessica A.1

Affiliation:

1. Influenza Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, USA

2. Emory University, Atlanta, Georgia, USA

Abstract

ABSTRACT Although influenza viruses typically cause respiratory tract disease, some viruses, particularly those with an H7 hemagglutinin, have been isolated from the eyes of conjunctivitis cases. Previous work has shown that isolates of multiple subtypes from both ocular and respiratory infections are capable of replication in human ex vivo ocular tissues and corneal or conjunctival cell monolayers, leaving the determinants of ocular tropism unclear. Here, we evaluated the effect of several variables on tropism for ocular cells cultured in vitro and examined the potential effect of the tear film on viral infectivity. All viruses tested were able to replicate in primary human corneal epithelial cell monolayers subjected to aerosol inoculation. The temperature at which cells were cultured postinoculation minimally affected infectivity. Replication efficiency, in contrast, was reduced at 33°C relative to that at 37°C, and this effect was slightly greater for the conjunctivitis isolates than for the respiratory ones. With the exception of a seasonal H3N2 virus, the subset of viruses studied in multilayer corneal tissue constructs also replicated productively after either aerosol or liquid inoculation. Human tears significantly inhibited the hemagglutination of both ocular and nonocular isolates, but the effect on viral infectivity was more variable, with tears reducing the infectivity of nonocular isolates more than ocular isolates. These data suggest that most influenza viruses may be capable of establishing infection if they reach the surface of ocular cells but that this is more likely for ocular-tropic viruses, as they are better able to maintain their infectivity during passage through the tear film. IMPORTANCE The potential spread of zoonotic influenza viruses to humans represents an important threat to public health. Unfortunately, despite the importance of cellular and tissue tropism to pathogenesis, determinants of influenza virus tropism have yet to be fully elucidated. Here, we sought to identify factors that limit the ability of most influenza viruses to cause ocular infection. Although ocular symptoms in humans caused by avian influenza viruses tend to be relatively mild, these infections are concerning due to the potential of the ocular surface to serve as a portal of entry for viruses that go on to establish respiratory infections. Furthermore, a better understanding of the factors that influence infection and replication in this noncanonical site may point toward novel determinants of tropism in the respiratory tract.

Funder

HHS | Centers for Disease Control and Prevention

Publisher

American Society for Microbiology

Subject

Virology,Insect Science,Immunology,Microbiology

Reference68 articles.

1. Clinical Findings in 111 Cases of Influenza A (H7N9) Virus Infection

2. Mild infection of a novel H7N9 avian influenza virus in children in Shanghai

3. World Health Organization. 2017. Influenza at the human-animal interface: summary and assessment, 17 May 2017 to 15 June 2017. World Health Organization, Geneva, Switzerland.

4. Garten W, Klenk HD. 2008. Cleavage activation of the influenza virus hemagglutinin and its role in pathogenesis, p 156–167. In Klenk HD, Matrosovich MN, Stech J (ed), Avian influenza. S Karger, Basel, Switzerland.

5. Avian influenza A/(H7N2) outbreak in the United Kingdom;Editorial Team;Euro Surveill,2007

Cited by 37 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3