Evidence that Clostridium perfringens Enterotoxin-Induced Intestinal Damage and Enterotoxemic Death in Mice Can Occur Independently of Intestinal Caspase-3 Activation

Author:

Freedman John C.1,Navarro Mauricio A.2,Morrell Eleonora2,Beingesser Juliann2,Shrestha Archana1,McClane Bruce A.1,Uzal Francisco A.2

Affiliation:

1. Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA

2. California Animal Health and Food Safety Laboratory, San Bernardino Branch, School of Veterinary Medicine, University of California—Davis, San Bernardino, California, USA

Abstract

ABSTRACT Clostridium perfringens enterotoxin (CPE) is responsible for the gastrointestinal symptoms of C. perfringens type A food poisoning and some cases of nonfoodborne gastrointestinal diseases, such as antibiotic-associated diarrhea. In the presence of certain predisposing medical conditions, this toxin can also be absorbed from the intestines to cause enterotoxemic death. CPE action in vivo involves intestinal damage, which begins at the villus tips. The cause of this CPE-induced intestinal damage is unknown, but CPE can induce caspase-3-mediated apoptosis in cultured enterocyte-like Caco-2 cells. Therefore, the current study evaluated whether CPE activates caspase-3 in the intestines and, if so, whether this effect is required for the development of intestinal tissue damage or enterotoxemic lethality. Using a mouse ligated small intestinal loop model, CPE was shown to cause intestinal caspase-3 activation in a dose- and time-dependent manner. Most of this caspase-3 activation occurred in epithelial cells shed from villus tips. However, CPE-induced caspase-3 activation occurred after the onset of tissue damage. Furthermore, inhibition of intestinal caspase-3 activity did not affect the onset of intestinal tissue damage. Similarly, inhibition of intestinal caspase-3 activity did not reduce CPE-induced enterotoxemic lethality in these mice. Collectively, these results demonstrate that caspase-3 activation occurs in the CPE-treated intestine but that this effect is not necessary for the development of CPE-induced intestinal tissue damage or enterotoxemic lethality.

Funder

HHS | NIH | National Institute of Allergy and Infectious Diseases

Publisher

American Society for Microbiology

Subject

Infectious Diseases,Immunology,Microbiology,Parasitology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3