The QseG Lipoprotein Impacts the Virulence of Enterohemorrhagic Escherichia coli and Citrobacter rodentium and Regulates Flagellar Phase Variation in Salmonella enterica Serovar Typhimurium

Author:

Cameron Elizabeth A.12,Gruber Charley C.12,Ritchie Jennifer M.3,Waldor Matthew K.4,Sperandio Vanessa12

Affiliation:

1. Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, Texas, USA

2. Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, Texas, USA

3. Department of Microbial Sciences, University of Surrey, Guildford, United Kingdom

4. Howard Hughes Medical Institute, Division of Infectious Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA

Abstract

ABSTRACT The QseEF histidine kinase/response regulator system modulates expression of enterohemorrhagic Escherichia coli (EHEC) and Salmonella enterica serovar Typhimurium virulence genes in response to the host neurotransmitters epinephrine and norepinephrine. qseG , which encodes an outer membrane lipoprotein, is cotranscribed with qseEF in these enteric pathogens, but there is little knowledge of its role in virulence. Here, we found that in EHEC QseG interacts with the type III secretion system (T3SS) gate protein SepL and modulates the kinetics of attaching and effacing (AE) lesion formation on tissue-cultured cells. Moreover, an EHEC Δ qseG mutant had reduced intestinal colonization in an infant rabbit model. Additionally, in Citrobacter rodentium , an AE lesion-forming pathogen like EHEC, QseG is required for full virulence in a mouse model. In S . Typhimurium, we found that QseG regulates the phase switch between the two flagellin types, FliC and FljB. In an S . Typhimurium Δ qseG mutant, the phase-variable promoter for fljB is preferentially switched into the “on” position, leading to overproduction of this phase two flagellin. In infection of tissue-cultured cells, the S . Typhimurium Δ qseG mutant provokes increased inflammatory cytokine production versus the wild type; in vivo , in a murine infection model, the Δ qseG strain caused a more severe inflammatory response and was attenuated versus the wild-type strain. Collectively, our findings demonstrate that QseG is important for full virulence in several enteric pathogens and controls flagellar phase variation in S . Typhimurium, and they highlight both the complexity and conservation of the regulatory networks that control the virulence of enteric pathogens.

Funder

HHS | NIH | National Institute of Allergy and Infectious Diseases

Publisher

American Society for Microbiology

Subject

Infectious Diseases,Immunology,Microbiology,Parasitology

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3