Inactivated Francisella tularensis Live Vaccine Strain Protects against Respiratory Tularemia by Intranasal Vaccination in an Immunoglobulin A-Dependent Fashion

Author:

Baron Shawn D.1,Singh Rajendra1,Metzger Dennis W.1

Affiliation:

1. Center for Immunology & Microbial Disease, Albany Medical College, Albany, New York 12208

Abstract

ABSTRACT Francisella tularensis is a gram-negative intracellular bacterium that is considered to be a potential category A biological weapon due to its extreme virulence. Although vaccination with the attenuated live vaccine strain (LVS) of F. tularensis can protect against lethal challenge, use of inactivated or subunit forms as vaccine candidates for induction of protective antibody responses has not been fully evaluated. In the present study, we examined whether immune protection in the lung could be stimulated by intranasal administration of inactivated LVS together with interleukin-12 (IL-12) as an adjuvant. LVS was inactivated by heat, paraformaldehyde treatment, or exposure to UV, and inactivation of the preparations was confirmed by assessing bacterial growth and the survival of mice after direct inoculation. We found that mucosal vaccination with inactivated LVS provided 90 to 100% protection in mice after lethal intranasal challenge with 10 4 CFU of LVS, and this protection was dependent on inclusion of exogenous IL-12 during vaccine administration. Survival of vaccinated mice after live bacterial challenge was correlated with reduced bacterial burden, decreased pulmonary inflammation, increased serum antibody titers, and lower levels of gamma interferon (IFN-γ), tumor necrosis factor alpha, and IL-6 in the lungs, livers, and spleens. Whereas NK cells were primarily responsible for the production of IFN-γ in unvaccinated, challenged animals, vaccinated mice had increased levels of lung IFN-γ + CD4 + T cells after challenge. Significantly, mice genetically deficient in immunoglobulin A (IgA) expression were unable to survive lethal challenge after vaccination. These results are the first results to demonstrate that IgA-mediated protection against lethal respiratory tularemia occurs after mucosal vaccination with inactivated F. tularensis LVS.

Publisher

American Society for Microbiology

Subject

Infectious Diseases,Immunology,Microbiology,Parasitology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3