Differences in Gene Expression between the Classical and El Tor Biotypes of Vibrio cholerae O1

Author:

Beyhan Sinem1,Tischler Anna D.2,Camilli Andrew2,Yildiz Fitnat H.1

Affiliation:

1. Department of Environmental Toxicology, University of California, Santa Cruz, Santa Cruz, California 95064

2. Howard Hughes Medical Institute and Department of Molecular Biology and Microbiology, Tufts University School of Medicine, 136 Harrison Avenue, Boston, Massachusetts 02111

Abstract

ABSTRACT Differences in whole-genome expression patterns between the classical and El Tor biotypes of Vibrio cholerae O1 were determined under conditions that induce virulence gene expression in the classical biotype. A total of 524 genes (13.5% of the genome) were found to be differentially expressed in the two biotypes. The expression of genes encoding proteins required for biofilm formation, chemotaxis, and transport of amino acids, peptides, and iron was higher in the El Tor biotype. These gene expression differences may contribute to the enhanced survival capacity of the El Tor biotype in environmental reservoirs. The expression of genes encoding virulence factors was higher in the classical than in the El Tor biotype. In addition, the vieSAB genes, which were originally identified as regulators of ctxA transcription, were expressed at a fivefold higher level in the classical biotype. We determined the VieA regulon in both biotypes by transcriptome comparison of wild-type and vieA deletion mutant strains. VieA predominantly regulates gene expression in the classical biotype; 401 genes (10.3% of the genome), including those encoding proteins required for virulence, exopolysaccharide biosynthesis, and flagellum production as well as those regulated by σ E , are differentially expressed in the classical vieA deletion mutant. In contrast, only five genes were regulated by VieA in the El Tor biotype. A large fraction (20.8%) of the genes that are differentially expressed in the classical versus the El Tor biotype are controlled by VieA in the classical biotype. Thus, VieA is a major regulator of genes in the classical biotype under virulence gene-inducing conditions.

Publisher

American Society for Microbiology

Subject

Infectious Diseases,Immunology,Microbiology,Parasitology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3