Use of Reduced Sulfur Compounds by Beggiatoa spp.: Enzymology and Physiology of Marine and Freshwater Strains in Homogeneous and Gradient Cultures

Author:

Hagen K D,Nelson D C

Abstract

The marine Beggiatoa strains MS-81-6 and MS-81-1c are filamentous, gliding, colorless sulfur bacteria. They have traditionally been cultured in very limited quantities in sulfide gradient media, where they grow as chemolithoautotrophs, forming a thin horizontal plate well below the air-agar interface. There, the facultatively chemolithoautotrophic strain MS-81-6 quantitatively harvests the flux of sulfide diffusing from below and oxidizes it to sulfate by using oxygen as the electron acceptor. Only recently have these strains been cultivated in bulk in defined liquid media (K. D. Hagen and D. C. Nelson, Appl. Environ. Microbiol. 62:947-953, 1996). In the current study, the obligately chemolithoautotrophic strain MS-81-1c was shown to have, despite much greater storage of elemental sulfur, an apparent Y(infH)(inf(inf2))(infS) twice that of MS-81-6 when the two strains were grown in identical sulfide-limited gradient media. While the basis of this difference in energy conservation has not been established, differences in sulfur oxidation enzymes were noted. Strain MS-81-1c appeared to be able to oxidize sulfite by using either the adenosine phosphosulfate (APS) pathway or a sulfite:acceptor oxidoreductase. APS pathway enzymes (ATP sulfurylase and APS reductase) were present at relatively high and constant levels regardless of growth conditions, while the sulfite:acceptor oxidoreductase activity varied at least eightfold, with the highest activity produced in sulfide gradient medium. By contrast, strain MS-81-6 showed no detectable activity of the APS pathway enzymes and possessed a sulfite:acceptor oxidoreductase activity just sufficient to account for its observed rate of growth in sulfide gradient medium. Freshwater strain OH-75-2a showed activity and regulation of sulfite:acceptor oxidoreductase consistent with lithotrophic energy conservation, a feature not yet proven for any freshwater Beggiatoa strain.

Publisher

American Society for Microbiology

Subject

Ecology,Applied Microbiology and Biotechnology,Food Science,Biotechnology

Cited by 43 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3