Affiliation:
1. Institut Jacques Monod, CNRS-Université Paris, France.
Abstract
An Escherichia coli population harvested in exponential phase at about 10(8) cells/ml was treated in phosphate buffer with HOCl at concentrations ranging from 0.4 to 1 mg/liter (7.7 to 19 microM). The HOCl stress resulted in the appearance of three cell subpopulations: a majority of dead (nonrespiring) cells, a few culturable cells (10(2) to 10(4)), and about 10(7) viable but nonculturable cells. In the absence of any added exogenous nutrient, a culturable population could be recovered after 1 day of incubation in phosphate buffer, and such a population would reach a cell density close to 10% of the initial density of the stressed population, whatever the initial number of survivors. When a small number of untreated cells were mixed with the stressed population, growth of the untreated cells was observed, demonstrating that damaged cells provided nutrients. Similarly, a filtrate and a disrupted-cell filtrate of the stressed population supported growth of untreated cells with the same efficiency. The number of CFU (untreated or stressed) at plateau phase depended on the initial density of the stressed cells. Taken together, these results suggest that recovery in phosphate buffer of an HOCl-stressed population is in large part due to growth of a few culturable cells at the expense of damaged cells. However, comparison of the growth rates of the stressed culturable population and of untreated bacteria growing in filtrate showed significantly faster growth of the stressed cells, a fact not fully compatible with the hypothesis that recovery is only the simple growth of survivors. We suggest, therefore, that in addition to growth of the few culturable stressed cells, there is repair and growth of some mildly injured viable but nonculturable cells.
Publisher
American Society for Microbiology
Subject
Ecology,Applied Microbiology and Biotechnology,Food Science,Biotechnology
Reference35 articles.
1. Bachmann B. J. 1996. Derivations and genotypes of some mutant derivatives of Escherichia coli K-12 p. 2460-2488. In F. C. Neidhardt R. Curtiss III J. L. Ingraham E. C. C. Lin K. B. Low B. Magasanik W. S. Reznikoff M. Riley M. Schaechter and H. E. Umbarger (ed.) Escherichia coli and Salmonella: cellular and molecular biology 2nd ed. American Society for Microbiology Washington D.C.
2. The viable but non-culturable hypothesis and medical bacteriology;Barer M. R.;Rev. Med. Microbiol.,1993
3. Viable but nonculturable bacteria in drinking water;Byrd J. J.;Appl. Environ. Microbiol.,1991
4. Improved membrane filtration method incorporating catalase and sodium pyruvate for detection of chlorine-stressed coliform bacteria;Calabrese J. P.;Appl. Environ. Microbiol.,1990
5. Hypochlorous acid stress in Escherichia coli: resistance, DNA damage, and comparison with hydrogen peroxide stress;Dukan S.;J. Bacteriol.,1996
Cited by
55 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献