Critical role of anteiso-C15:0 fatty acid in the growth of Listeria monocytogenes at low temperatures

Author:

Annous B A1,Becker L A1,Bayles D O1,Labeda D P1,Wilkinson B J1

Affiliation:

1. Department of Biological Sciences, Illinois State University, Normal 61790-4120, USA.

Abstract

Listeria monocytogenes is a food-borne pathogen capable of growth at refrigeration temperatures. Membrane lipid fatty acids are major determinants of a sufficiently fluid membrane state to allow growth at low temperatures. L. monocytogenes was characterized by a fatty acid profile dominated to an unusual extent (> 95%) by branched-chain fatty acids, with the major fatty acids being anteiso-C15:0, anteiso-C17:0, and iso-C15:0 in cultures grown in complex or defined media at 37 degrees C. Determination of the fatty acid composition of L. monocytogenes 10403S and SLCC 53 grown over the temperature range 45 to 5 degrees C revealed two modes of adaptation of fatty acid composition to lower growth temperatures: (i) shortening of fatty acid chain length and (ii) alteration of branching from iso to anteiso. Two transposon Tn917-induced cold-sensitive mutants incapable of growth at low temperatures had dramatically altered fatty acid compositions with low levels of i-C15:0, a-C15:0, and a-C17:0 and high levels of i-C14:0, C14:0, i-C16:0, and C16:0. The levels of a-C15:0 and a-C17:0 and the ability to grow at low temperatures were restored by supplementing media with 2-methylbutyric acid, presumably because it acted as a precursor of methylbutyryl coenzyme A, the primer for synthesis of anteiso odd-numbered fatty acids. When mid-exponential-phase 10403S cells grown at 37 degrees C were temperature down-shocked to 5 degrees C they were able, for the most part, to reinitiate growth before the membrane fatty acid composition had reset to a composition more typical for low-temperature growth. No obvious evidence was found for a role for fatty acid unsaturation in adaptation of L. monocytogenes to cold temperature. The switch to a fatty acid profile dominated by a-C15:0 at low temperatures and the association of cold sensitivity with deficiency of a-C15:0 focus attention on the critical role of this fatty acid in growth of L. monocytogenes in the cold, presumably through its physical properties and their effects, in maintaining a fluid, liquid-crystalline state of the membrane lipids.

Publisher

American Society for Microbiology

Subject

Ecology,Applied Microbiology and Biotechnology,Food Science,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3