Affiliation:
1. Section of Molecular Genetics and Microbiology and Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, Texas 78712
Abstract
ABSTRACT
Cutl1/CCAAT displacement protein (CDP) is a transcriptional repressor of mouse mammary tumor virus (MMTV), a betaretrovirus that is a paradigm for mammary-specific gene regulation. Virgin mammary glands have high levels of full-length CDP (200 kDa) that binds to negative regulatory elements (NREs) to repress MMTV transcription. During late pregnancy, full-length CDP levels decline, and a 150-kDa form of CDP (CDP150) appears concomitantly with a decline in DNA-binding activity for the MMTV NREs and an increase in viral transcripts. Developmental regulation of CDP was recapitulated in the normal mammary epithelial line, SCp2. Western blotting of tissue and SCp2 nuclear extracts confirmed that CDP150 lacks the C terminus. Transfection of tagged full-length and mutant cDNAs into SCp2 cells and use of a cysteine protease inhibitor demonstrated that CDP is proteolytically processed within the homeodomain to remove the C terminus during differentiation. Mixing of virgin and lactating mammary extracts or transfection of mutant CDP cDNAs missing the homeodomain into cells containing full-length CDP also abrogated NRE binding. Loss of DNA binding correlated with increased expression of MMTV and other mammary-specific genes, indicating that CDP150 is a developmentally induced dominant-negative protein. Thus, a novel posttranslational process controls Cutl1/CDP activity and gene expression in the mammary gland.
Publisher
American Society for Microbiology
Subject
Cell Biology,Molecular Biology
Cited by
22 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献