ShcA Regulates Thymocyte Proliferation through Specific Transcription Factors and a c-Abl-Dependent Signaling Axis

Author:

Trampont Paul C.1,Zhang Li1,Giles Amber J.1,Walk Scott F.1,Gu Jing J.2,Pendergast Ann Marie2,Ravichandran Kodi S.1

Affiliation:

1. Department of Microbiology, Immunology and Cancer Biology and Center for Cell Clearance, University of Virginia Health System, Charlottesville, Virginia, USA

2. Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, North Carolina, USA

Abstract

ABSTRACT Signaling via the pre-T-cell receptor (pre-TCR), along with associated signals from Notch and chemokine receptors, regulates the β-selection checkpoint that operates on CD4 CD8 doubly negative (DN) thymocytes. Since many hematopoietic malignancies arise at the immature developmental stages of lymphocytes, understanding the signal integration and how specific signaling molecules and distal transcription factors regulate cellular outcomes is of importance. Here, a series of molecular and genetic approaches revealed that the ShcA adapter protein critically influences proliferation and differentiation during β-selection. We found that ShcA functions downstream of the pre-TCR and p56 Lck and show that ShcA is important for extracellular signal-regulated kinase (ERK)-dependent upregulation of transcription factors early growth factor 1 (Egr1) and Egr3 in immature thymocytes and, in turn, of the expression and function of the Id3 and E2A helix-loop-helix (HLH) proteins. ShcA also contributes to pre-TCR-mediated induction of c-Myc and additional cell cycle regulators. Moreover, using an unbiased Saccharomyces cerevisiae (yeast) screen, we identified c-Abl as a binding partner of phosphorylated ShcA and demonstrated the relevance of the ShcA–c-Abl interaction in immature thymocytes. Collectively, these data identify multiple modes by which ShcA can fine-tune the development of early thymocytes, including a previously unappreciated ShcA–c-Abl axis that regulates thymocyte proliferation.

Publisher

American Society for Microbiology

Subject

Cell Biology,Molecular Biology

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3