Osmolarity, a Key Environmental Signal Controlling Expression of Leptospiral Proteins LigA and LigB and the Extracellular Release of LigA

Author:

Matsunaga James12,Sanchez Yolanda1,Xu Xiaoyi1,Haake David A.12

Affiliation:

1. Division of Infectious Diseases, Veterans Affairs Greater Los Angeles Healthcare System

2. Division of Infectious Diseases, Department of Medicine, UCLA David Geffen School of Medicine Los Angeles, California

Abstract

ABSTRACT The high-molecular-weight leptospiral immunoglobulin-like repeat (Lig) proteins are expressed only by virulent low-passage forms of pathogenic Leptospira species. We examined the effects of growth phase and environmental signals on the expression, surface exposure, and extracellular release of LigA and LigB. LigA was lost from stationary-phase cells, while LigB expression was maintained. The loss of cell-associated LigA correlated with selective release of a lower-molecular-weight form of LigA into the culture supernatant, while LigB and the outer membrane lipoprotein LipL41 remained associated with cells. Addition of tissue culture medium to leptospiral culture medium induced LigA and LigB expression and caused a substantial increase in released LigA. The sodium chloride component of tissue culture medium was primarily responsible for the enhanced release of LigA. Addition of sodium chloride, potassium chloride, or sodium sulfate to leptospiral medium to physiological osmolarity caused the induction of both cell-associated LigA and LigB, indicating that osmolarity regulates the expression of Lig proteins. Osmotic induction of Lig expression also resulted in enhanced release of LigA and increased surface exposure of LigB, as determined by surface immunofluorescence. Osmolarity appears to be a key environmental signal that controls the expression of LigA and LigB.

Publisher

American Society for Microbiology

Subject

Infectious Diseases,Immunology,Microbiology,Parasitology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3