Effects of Ploidy and Mating Type on Virulence of Candida albicans

Author:

Ibrahim Ashraf S.1,Magee B. B.2,Sheppard D. C.1,Yang Molly2,Kauffman Sarah3,Becker Jeff3,Edwards John E.1,Magee P. T.2

Affiliation:

1. Department of Medicine, Division of Infectious Diseases, Los Angeles Biomedical Research Institute at Harbor-UCLA Medical Center, Torrance, California 90502

2. Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, Minnesota 55455

3. Department of Microbiology, University of Tennessee, Knoxville, Tennessee 37996

Abstract

ABSTRACT Candida albicans is the most common fungal pathogen of humans. The recent discovery of sexuality in this organism has led to the demonstration of a mating type locus which is usually heterozygous, although some isolates are homozygous. Tetraploids can be formed between homozygotes of the opposite mating type. However, the role of the mating process and tetraploid formation in virulence has not been investigated. We describe here experiments using a murine model of disseminated candidiasis which demonstrate that in three strains, including CAI-4, the most commonly used strain background, tetraploids are less virulent than diploids and can undergo changes in ploidy during infection. In contrast to reports with other strains, we find that MTL homozygotes are almost as virulent as the heterozygotes. These results show that the level of ploidy in Candida albicans can affect virulence, but the mating type configuration does not necessarily do so.

Publisher

American Society for Microbiology

Subject

Infectious Diseases,Immunology,Microbiology,Parasitology

Cited by 46 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3