Influence of Pilin Glycosylation on Pseudomonas aeruginosa 1244 Pilus Function

Author:

Smedley James G.1,Jewell Erica1,Roguskie Jennifer1,Horzempa Joseph1,Syboldt Andrew1,Stolz Donna Beer2,Castric Peter1

Affiliation:

1. Department of Biological Sciences, Duquesne University, Pittsburgh, Pennsylvania 15282

2. Department of Cell Biology and Physiology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania

Abstract

ABSTRACT The opportunistic pathogen Pseudomonas aeruginosa is a leading cause of nosocomial pneumonia. Among its virulence factors, the type IV pili of P. aeruginosa strain 1244 contain a covalently linked, three-sugar glycan of previously unknown significance. The work described in this paper was carried out to determine the influence of the P. aeruginosa 1244 pilin glycan on pilus function, as well as a possible role in pathogenesis. To accomplish this, a deletion was introduced into the pilO gene of this organism. The isogenic knockout strain produced, 1244G7, was unable to glycosylate pilin but could produce pili normal in appearance and quantity. In addition, this strain had somewhat reduced twitching motility, was sensitive to pilus-specific bacteriophages, and could form a normal biofilm. Analysis of whole cells and isolated pili from wild-type P. aeruginosa strain 1244 by transmission electron microscopy with a glycan-specific immunogold label showed that this saccharide was distributed evenly over the fiber surface. The presence of the pilin glycan reduced the hydrophobicity of purified pili as well as whole cells. With regard to pathogenicity, P. aeruginosa strains producing glycosylated pili were commonly found among clinical isolates and particularly among those strains isolated from sputum. Competition index analysis using a mouse respiratory model comparing strains 1244 and 1244G7 indicated that the presence of the pilin glycan allowed for significantly greater survival in the lung environment. These results collectively suggest that the pilin glycan is a significant virulence factor and may aid in the establishment of infection.

Publisher

American Society for Microbiology

Subject

Infectious Diseases,Immunology,Microbiology,Parasitology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3