Adherence to Human Vaginal Epithelial Cells Signals for Increased Expression of Trichomonas vaginalis Genes

Author:

Kucknoor Ashwini S.1,Mundodi Vasanthakrishna1,Alderete J. F.1

Affiliation:

1. Department of Microbiology and Immunology, University of Texas Health Science Center at San Antonio, San Antonio, Texas

Abstract

ABSTRACT Host parasitism by Trichomonas vaginalis is complex, and the adhesion to vaginal epithelial cells (VECs) by trichomonads is preparatory to colonization of the vagina. Since we showed increased synthesis of adhesins after contact with VECs (A. F. Garcia, et al., Mol. Microbiol. 47: 1207-1224, 2003) and more recently demonstrated up-regulated gene expression in VECs after parasite attachment (A. S. Kucknoor, et al., Cell. Microbiol. 7: 887-897, 2005), we hypothesized that enhanced expression of adhesin and other genes would result from signaling of trichomonads following adherence. In order to identify the genes that are up-regulated, we constructed a subtraction cDNA library enriched for differentially expressed genes from the parasites that were in contact with the host cells. Thirty randomly selected cDNA clones representing the differentially regulated genes upon initial contact of parasites with host cells were sequenced. Several genes encoded functional proteins with specific functions known to be associated with colonization, such as adherence, change in morphology, and gene transcription and translation. Interestingly, genes unique to trichomonads with unknown functions were also up-regulated. Semiquantitative reverse transcription-PCR (RT-PCR) confirmed expression of select genes. An increased amount of protein was demonstrated by immunoblotting with monoclonal antibody. Finally, we showed the transcriptional regulation of some genes by iron by using RT-PCR. To our knowledge, this is the first report addressing the differential regulation of T. vaginalis genes immediately upon contact with VECs.

Publisher

American Society for Microbiology

Subject

Infectious Diseases,Immunology,Microbiology,Parasitology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3